This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015) (Proof shortened by AV, 7-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsid.e | |- E = Slot ( E ` ndx ) |
|
| setsnid.n | |- ( E ` ndx ) =/= D |
||
| Assertion | setsnid | |- ( E ` W ) = ( E ` ( W sSet <. D , C >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsid.e | |- E = Slot ( E ` ndx ) |
|
| 2 | setsnid.n | |- ( E ` ndx ) =/= D |
|
| 3 | id | |- ( W e. _V -> W e. _V ) |
|
| 4 | 1 3 | strfvnd | |- ( W e. _V -> ( E ` W ) = ( W ` ( E ` ndx ) ) ) |
| 5 | ovex | |- ( W sSet <. D , C >. ) e. _V |
|
| 6 | 5 1 | strfvn | |- ( E ` ( W sSet <. D , C >. ) ) = ( ( W sSet <. D , C >. ) ` ( E ` ndx ) ) |
| 7 | setsres | |- ( W e. _V -> ( ( W sSet <. D , C >. ) |` ( _V \ { D } ) ) = ( W |` ( _V \ { D } ) ) ) |
|
| 8 | 7 | fveq1d | |- ( W e. _V -> ( ( ( W sSet <. D , C >. ) |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( ( W |` ( _V \ { D } ) ) ` ( E ` ndx ) ) ) |
| 9 | fvex | |- ( E ` ndx ) e. _V |
|
| 10 | eldifsn | |- ( ( E ` ndx ) e. ( _V \ { D } ) <-> ( ( E ` ndx ) e. _V /\ ( E ` ndx ) =/= D ) ) |
|
| 11 | 9 2 10 | mpbir2an | |- ( E ` ndx ) e. ( _V \ { D } ) |
| 12 | fvres | |- ( ( E ` ndx ) e. ( _V \ { D } ) -> ( ( ( W sSet <. D , C >. ) |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( ( W sSet <. D , C >. ) ` ( E ` ndx ) ) ) |
|
| 13 | 11 12 | ax-mp | |- ( ( ( W sSet <. D , C >. ) |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( ( W sSet <. D , C >. ) ` ( E ` ndx ) ) |
| 14 | fvres | |- ( ( E ` ndx ) e. ( _V \ { D } ) -> ( ( W |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( W ` ( E ` ndx ) ) ) |
|
| 15 | 11 14 | ax-mp | |- ( ( W |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( W ` ( E ` ndx ) ) |
| 16 | 8 13 15 | 3eqtr3g | |- ( W e. _V -> ( ( W sSet <. D , C >. ) ` ( E ` ndx ) ) = ( W ` ( E ` ndx ) ) ) |
| 17 | 6 16 | eqtrid | |- ( W e. _V -> ( E ` ( W sSet <. D , C >. ) ) = ( W ` ( E ` ndx ) ) ) |
| 18 | 4 17 | eqtr4d | |- ( W e. _V -> ( E ` W ) = ( E ` ( W sSet <. D , C >. ) ) ) |
| 19 | 1 | str0 | |- (/) = ( E ` (/) ) |
| 20 | 19 | eqcomi | |- ( E ` (/) ) = (/) |
| 21 | eqid | |- ( W sSet <. D , C >. ) = ( W sSet <. D , C >. ) |
|
| 22 | reldmsets | |- Rel dom sSet |
|
| 23 | 20 21 22 | oveqprc | |- ( -. W e. _V -> ( E ` W ) = ( E ` ( W sSet <. D , C >. ) ) ) |
| 24 | 18 23 | pm2.61i | |- ( E ` W ) = ( E ` ( W sSet <. D , C >. ) ) |