This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rescabs2.c | |- ( ph -> C e. V ) |
|
| rescabs2.j | |- ( ph -> J Fn ( T X. T ) ) |
||
| rescabs2.s | |- ( ph -> S e. W ) |
||
| rescabs2.t | |- ( ph -> T C_ S ) |
||
| Assertion | rescabs2 | |- ( ph -> ( ( C |`s S ) |`cat J ) = ( C |`cat J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescabs2.c | |- ( ph -> C e. V ) |
|
| 2 | rescabs2.j | |- ( ph -> J Fn ( T X. T ) ) |
|
| 3 | rescabs2.s | |- ( ph -> S e. W ) |
|
| 4 | rescabs2.t | |- ( ph -> T C_ S ) |
|
| 5 | ressabs | |- ( ( S e. W /\ T C_ S ) -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ph -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) |
| 7 | 6 | oveq1d | |- ( ph -> ( ( ( C |`s S ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 8 | eqid | |- ( ( C |`s S ) |`cat J ) = ( ( C |`s S ) |`cat J ) |
|
| 9 | ovexd | |- ( ph -> ( C |`s S ) e. _V ) |
|
| 10 | 3 4 | ssexd | |- ( ph -> T e. _V ) |
| 11 | 8 9 10 2 | rescval2 | |- ( ph -> ( ( C |`s S ) |`cat J ) = ( ( ( C |`s S ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 12 | eqid | |- ( C |`cat J ) = ( C |`cat J ) |
|
| 13 | 12 1 10 2 | rescval2 | |- ( ph -> ( C |`cat J ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 14 | 7 11 13 | 3eqtr4d | |- ( ph -> ( ( C |`s S ) |`cat J ) = ( C |`cat J ) ) |