This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine is one-to-one over the closed interval from 0 to _pi . (Contributed by Paul Chapman, 16-Mar-2008) (Proof shortened by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos11 | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A = B <-> ( cos ` A ) = ( cos ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | |- ( ( -. A < B /\ -. B < A ) <-> ( -. B < A /\ -. A < B ) ) |
|
| 2 | cosord | |- ( ( B e. ( 0 [,] _pi ) /\ A e. ( 0 [,] _pi ) ) -> ( B < A <-> ( cos ` A ) < ( cos ` B ) ) ) |
|
| 3 | 2 | ancoms | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( B < A <-> ( cos ` A ) < ( cos ` B ) ) ) |
| 4 | 3 | notbid | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( -. B < A <-> -. ( cos ` A ) < ( cos ` B ) ) ) |
| 5 | cosord | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A < B <-> ( cos ` B ) < ( cos ` A ) ) ) |
|
| 6 | 5 | notbid | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( -. A < B <-> -. ( cos ` B ) < ( cos ` A ) ) ) |
| 7 | 4 6 | anbi12d | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( ( -. B < A /\ -. A < B ) <-> ( -. ( cos ` A ) < ( cos ` B ) /\ -. ( cos ` B ) < ( cos ` A ) ) ) ) |
| 8 | 1 7 | bitrid | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( ( -. A < B /\ -. B < A ) <-> ( -. ( cos ` A ) < ( cos ` B ) /\ -. ( cos ` B ) < ( cos ` A ) ) ) ) |
| 9 | 0re | |- 0 e. RR |
|
| 10 | pire | |- _pi e. RR |
|
| 11 | 9 10 | elicc2i | |- ( A e. ( 0 [,] _pi ) <-> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) |
| 12 | 11 | simp1bi | |- ( A e. ( 0 [,] _pi ) -> A e. RR ) |
| 13 | 9 10 | elicc2i | |- ( B e. ( 0 [,] _pi ) <-> ( B e. RR /\ 0 <_ B /\ B <_ _pi ) ) |
| 14 | 13 | simp1bi | |- ( B e. ( 0 [,] _pi ) -> B e. RR ) |
| 15 | lttri3 | |- ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
|
| 16 | 12 14 15 | syl2an | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
| 17 | recoscl | |- ( A e. RR -> ( cos ` A ) e. RR ) |
|
| 18 | recoscl | |- ( B e. RR -> ( cos ` B ) e. RR ) |
|
| 19 | lttri3 | |- ( ( ( cos ` A ) e. RR /\ ( cos ` B ) e. RR ) -> ( ( cos ` A ) = ( cos ` B ) <-> ( -. ( cos ` A ) < ( cos ` B ) /\ -. ( cos ` B ) < ( cos ` A ) ) ) ) |
|
| 20 | 17 18 19 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( cos ` A ) = ( cos ` B ) <-> ( -. ( cos ` A ) < ( cos ` B ) /\ -. ( cos ` B ) < ( cos ` A ) ) ) ) |
| 21 | 12 14 20 | syl2an | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( ( cos ` A ) = ( cos ` B ) <-> ( -. ( cos ` A ) < ( cos ` B ) /\ -. ( cos ` B ) < ( cos ` A ) ) ) ) |
| 22 | 8 16 21 | 3bitr4d | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A = B <-> ( cos ` A ) = ( cos ` B ) ) ) |