This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of nqereu : the function /Q acts as the identity on members of Q. . (Contributed by Mario Carneiro, 6-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nqerid | |- ( A e. Q. -> ( /Q ` A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqerf | |- /Q : ( N. X. N. ) --> Q. |
|
| 2 | ffun | |- ( /Q : ( N. X. N. ) --> Q. -> Fun /Q ) |
|
| 3 | 1 2 | ax-mp | |- Fun /Q |
| 4 | elpqn | |- ( A e. Q. -> A e. ( N. X. N. ) ) |
|
| 5 | id | |- ( A e. Q. -> A e. Q. ) |
|
| 6 | enqer | |- ~Q Er ( N. X. N. ) |
|
| 7 | 6 | a1i | |- ( A e. Q. -> ~Q Er ( N. X. N. ) ) |
| 8 | 7 4 | erref | |- ( A e. Q. -> A ~Q A ) |
| 9 | df-erq | |- /Q = ( ~Q i^i ( ( N. X. N. ) X. Q. ) ) |
|
| 10 | 9 | breqi | |- ( A /Q A <-> A ( ~Q i^i ( ( N. X. N. ) X. Q. ) ) A ) |
| 11 | brinxp2 | |- ( A ( ~Q i^i ( ( N. X. N. ) X. Q. ) ) A <-> ( ( A e. ( N. X. N. ) /\ A e. Q. ) /\ A ~Q A ) ) |
|
| 12 | 10 11 | bitri | |- ( A /Q A <-> ( ( A e. ( N. X. N. ) /\ A e. Q. ) /\ A ~Q A ) ) |
| 13 | 4 5 8 12 | syl21anbrc | |- ( A e. Q. -> A /Q A ) |
| 14 | funbrfv | |- ( Fun /Q -> ( A /Q A -> ( /Q ` A ) = A ) ) |
|
| 15 | 3 13 14 | mpsyl | |- ( A e. Q. -> ( /Q ` A ) = A ) |