This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvopab3g.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
| fvopab3g.3 | |- ( y = B -> ( ps <-> ch ) ) |
||
| fvopab3g.4 | |- ( x e. C -> E! y ph ) |
||
| fvopab3g.5 | |- F = { <. x , y >. | ( x e. C /\ ph ) } |
||
| Assertion | fvopab3g | |- ( ( A e. C /\ B e. D ) -> ( ( F ` A ) = B <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvopab3g.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | fvopab3g.3 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 3 | fvopab3g.4 | |- ( x e. C -> E! y ph ) |
|
| 4 | fvopab3g.5 | |- F = { <. x , y >. | ( x e. C /\ ph ) } |
|
| 5 | eleq1 | |- ( x = A -> ( x e. C <-> A e. C ) ) |
|
| 6 | 5 1 | anbi12d | |- ( x = A -> ( ( x e. C /\ ph ) <-> ( A e. C /\ ps ) ) ) |
| 7 | 2 | anbi2d | |- ( y = B -> ( ( A e. C /\ ps ) <-> ( A e. C /\ ch ) ) ) |
| 8 | 6 7 | opelopabg | |- ( ( A e. C /\ B e. D ) -> ( <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } <-> ( A e. C /\ ch ) ) ) |
| 9 | 3 4 | fnopab | |- F Fn C |
| 10 | fnopfvb | |- ( ( F Fn C /\ A e. C ) -> ( ( F ` A ) = B <-> <. A , B >. e. F ) ) |
|
| 11 | 9 10 | mpan | |- ( A e. C -> ( ( F ` A ) = B <-> <. A , B >. e. F ) ) |
| 12 | 4 | eleq2i | |- ( <. A , B >. e. F <-> <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } ) |
| 13 | 11 12 | bitrdi | |- ( A e. C -> ( ( F ` A ) = B <-> <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } ) ) |
| 14 | 13 | adantr | |- ( ( A e. C /\ B e. D ) -> ( ( F ` A ) = B <-> <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } ) ) |
| 15 | ibar | |- ( A e. C -> ( ch <-> ( A e. C /\ ch ) ) ) |
|
| 16 | 15 | adantr | |- ( ( A e. C /\ B e. D ) -> ( ch <-> ( A e. C /\ ch ) ) ) |
| 17 | 8 14 16 | 3bitr4d | |- ( ( A e. C /\ B e. D ) -> ( ( F ` A ) = B <-> ch ) ) |