This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness of inverse element in commutative, associative operation with identity. Remark in proof of Proposition 9-2.4 of Gleason p. 119. (Contributed by NM, 4-Mar-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovmo.2 | |- B e. S |
|
| caovmo.dom | |- dom F = ( S X. S ) |
||
| caovmo.3 | |- -. (/) e. S |
||
| caovmo.com | |- ( x F y ) = ( y F x ) |
||
| caovmo.ass | |- ( ( x F y ) F z ) = ( x F ( y F z ) ) |
||
| caovmo.id | |- ( x e. S -> ( x F B ) = x ) |
||
| Assertion | caovmo | |- E* w ( A F w ) = B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovmo.2 | |- B e. S |
|
| 2 | caovmo.dom | |- dom F = ( S X. S ) |
|
| 3 | caovmo.3 | |- -. (/) e. S |
|
| 4 | caovmo.com | |- ( x F y ) = ( y F x ) |
|
| 5 | caovmo.ass | |- ( ( x F y ) F z ) = ( x F ( y F z ) ) |
|
| 6 | caovmo.id | |- ( x e. S -> ( x F B ) = x ) |
|
| 7 | oveq1 | |- ( u = A -> ( u F w ) = ( A F w ) ) |
|
| 8 | 7 | eqeq1d | |- ( u = A -> ( ( u F w ) = B <-> ( A F w ) = B ) ) |
| 9 | 8 | mobidv | |- ( u = A -> ( E* w ( u F w ) = B <-> E* w ( A F w ) = B ) ) |
| 10 | oveq2 | |- ( w = v -> ( u F w ) = ( u F v ) ) |
|
| 11 | 10 | eqeq1d | |- ( w = v -> ( ( u F w ) = B <-> ( u F v ) = B ) ) |
| 12 | 11 | mo4 | |- ( E* w ( u F w ) = B <-> A. w A. v ( ( ( u F w ) = B /\ ( u F v ) = B ) -> w = v ) ) |
| 13 | simpr | |- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u F v ) = B ) |
|
| 14 | 13 | oveq2d | |- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( w F ( u F v ) ) = ( w F B ) ) |
| 15 | simpl | |- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u F w ) = B ) |
|
| 16 | 15 | oveq1d | |- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( ( u F w ) F v ) = ( B F v ) ) |
| 17 | vex | |- u e. _V |
|
| 18 | vex | |- w e. _V |
|
| 19 | vex | |- v e. _V |
|
| 20 | 17 18 19 5 | caovass | |- ( ( u F w ) F v ) = ( u F ( w F v ) ) |
| 21 | 17 18 19 4 5 | caov12 | |- ( u F ( w F v ) ) = ( w F ( u F v ) ) |
| 22 | 20 21 | eqtri | |- ( ( u F w ) F v ) = ( w F ( u F v ) ) |
| 23 | 1 | elexi | |- B e. _V |
| 24 | 23 19 4 | caovcom | |- ( B F v ) = ( v F B ) |
| 25 | 16 22 24 | 3eqtr3g | |- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( w F ( u F v ) ) = ( v F B ) ) |
| 26 | 14 25 | eqtr3d | |- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( w F B ) = ( v F B ) ) |
| 27 | 15 1 | eqeltrdi | |- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u F w ) e. S ) |
| 28 | 2 3 | ndmovrcl | |- ( ( u F w ) e. S -> ( u e. S /\ w e. S ) ) |
| 29 | 27 28 | syl | |- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u e. S /\ w e. S ) ) |
| 30 | oveq1 | |- ( x = w -> ( x F B ) = ( w F B ) ) |
|
| 31 | id | |- ( x = w -> x = w ) |
|
| 32 | 30 31 | eqeq12d | |- ( x = w -> ( ( x F B ) = x <-> ( w F B ) = w ) ) |
| 33 | 32 6 | vtoclga | |- ( w e. S -> ( w F B ) = w ) |
| 34 | 29 33 | simpl2im | |- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( w F B ) = w ) |
| 35 | 13 1 | eqeltrdi | |- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u F v ) e. S ) |
| 36 | 2 3 | ndmovrcl | |- ( ( u F v ) e. S -> ( u e. S /\ v e. S ) ) |
| 37 | 35 36 | syl | |- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u e. S /\ v e. S ) ) |
| 38 | oveq1 | |- ( x = v -> ( x F B ) = ( v F B ) ) |
|
| 39 | id | |- ( x = v -> x = v ) |
|
| 40 | 38 39 | eqeq12d | |- ( x = v -> ( ( x F B ) = x <-> ( v F B ) = v ) ) |
| 41 | 40 6 | vtoclga | |- ( v e. S -> ( v F B ) = v ) |
| 42 | 37 41 | simpl2im | |- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( v F B ) = v ) |
| 43 | 26 34 42 | 3eqtr3d | |- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> w = v ) |
| 44 | 43 | ax-gen | |- A. v ( ( ( u F w ) = B /\ ( u F v ) = B ) -> w = v ) |
| 45 | 12 44 | mpgbir | |- E* w ( u F w ) = B |
| 46 | 9 45 | vtoclg | |- ( A e. S -> E* w ( A F w ) = B ) |
| 47 | moanimv | |- ( E* w ( A e. S /\ ( A F w ) = B ) <-> ( A e. S -> E* w ( A F w ) = B ) ) |
|
| 48 | 46 47 | mpbir | |- E* w ( A e. S /\ ( A F w ) = B ) |
| 49 | eleq1 | |- ( ( A F w ) = B -> ( ( A F w ) e. S <-> B e. S ) ) |
|
| 50 | 1 49 | mpbiri | |- ( ( A F w ) = B -> ( A F w ) e. S ) |
| 51 | 2 3 | ndmovrcl | |- ( ( A F w ) e. S -> ( A e. S /\ w e. S ) ) |
| 52 | 50 51 | syl | |- ( ( A F w ) = B -> ( A e. S /\ w e. S ) ) |
| 53 | 52 | simpld | |- ( ( A F w ) = B -> A e. S ) |
| 54 | 53 | ancri | |- ( ( A F w ) = B -> ( A e. S /\ ( A F w ) = B ) ) |
| 55 | 54 | moimi | |- ( E* w ( A e. S /\ ( A F w ) = B ) -> E* w ( A F w ) = B ) |
| 56 | 48 55 | ax-mp | |- E* w ( A F w ) = B |