This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of quoremnn0 not using quoremz . TODO - Keep either quoremnn0ALT (if we don't keep quoremz ) or quoremnn0 ? (Contributed by NM, 14-Aug-2008) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | quorem.1 | |- Q = ( |_ ` ( A / B ) ) |
|
| quorem.2 | |- R = ( A - ( B x. Q ) ) |
||
| Assertion | quoremnn0ALT | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( Q e. NN0 /\ R e. NN0 ) /\ ( R < B /\ A = ( ( B x. Q ) + R ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quorem.1 | |- Q = ( |_ ` ( A / B ) ) |
|
| 2 | quorem.2 | |- R = ( A - ( B x. Q ) ) |
|
| 3 | fldivnn0 | |- ( ( A e. NN0 /\ B e. NN ) -> ( |_ ` ( A / B ) ) e. NN0 ) |
|
| 4 | 1 3 | eqeltrid | |- ( ( A e. NN0 /\ B e. NN ) -> Q e. NN0 ) |
| 5 | nnnn0 | |- ( B e. NN -> B e. NN0 ) |
|
| 6 | 5 | adantl | |- ( ( A e. NN0 /\ B e. NN ) -> B e. NN0 ) |
| 7 | 6 4 | nn0mulcld | |- ( ( A e. NN0 /\ B e. NN ) -> ( B x. Q ) e. NN0 ) |
| 8 | simpl | |- ( ( A e. NN0 /\ B e. NN ) -> A e. NN0 ) |
|
| 9 | 4 | nn0cnd | |- ( ( A e. NN0 /\ B e. NN ) -> Q e. CC ) |
| 10 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 11 | 10 | adantl | |- ( ( A e. NN0 /\ B e. NN ) -> B e. CC ) |
| 12 | nnne0 | |- ( B e. NN -> B =/= 0 ) |
|
| 13 | 12 | adantl | |- ( ( A e. NN0 /\ B e. NN ) -> B =/= 0 ) |
| 14 | 9 11 13 | divcan3d | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( B x. Q ) / B ) = Q ) |
| 15 | nn0nndivcl | |- ( ( A e. NN0 /\ B e. NN ) -> ( A / B ) e. RR ) |
|
| 16 | flle | |- ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) <_ ( A / B ) ) |
|
| 17 | 15 16 | syl | |- ( ( A e. NN0 /\ B e. NN ) -> ( |_ ` ( A / B ) ) <_ ( A / B ) ) |
| 18 | 1 17 | eqbrtrid | |- ( ( A e. NN0 /\ B e. NN ) -> Q <_ ( A / B ) ) |
| 19 | 14 18 | eqbrtrd | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( B x. Q ) / B ) <_ ( A / B ) ) |
| 20 | 7 | nn0red | |- ( ( A e. NN0 /\ B e. NN ) -> ( B x. Q ) e. RR ) |
| 21 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 22 | 21 | adantr | |- ( ( A e. NN0 /\ B e. NN ) -> A e. RR ) |
| 23 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 24 | 23 | adantl | |- ( ( A e. NN0 /\ B e. NN ) -> B e. RR ) |
| 25 | nngt0 | |- ( B e. NN -> 0 < B ) |
|
| 26 | 25 | adantl | |- ( ( A e. NN0 /\ B e. NN ) -> 0 < B ) |
| 27 | lediv1 | |- ( ( ( B x. Q ) e. RR /\ A e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( B x. Q ) <_ A <-> ( ( B x. Q ) / B ) <_ ( A / B ) ) ) |
|
| 28 | 20 22 24 26 27 | syl112anc | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( B x. Q ) <_ A <-> ( ( B x. Q ) / B ) <_ ( A / B ) ) ) |
| 29 | 19 28 | mpbird | |- ( ( A e. NN0 /\ B e. NN ) -> ( B x. Q ) <_ A ) |
| 30 | nn0sub2 | |- ( ( ( B x. Q ) e. NN0 /\ A e. NN0 /\ ( B x. Q ) <_ A ) -> ( A - ( B x. Q ) ) e. NN0 ) |
|
| 31 | 7 8 29 30 | syl3anc | |- ( ( A e. NN0 /\ B e. NN ) -> ( A - ( B x. Q ) ) e. NN0 ) |
| 32 | 2 31 | eqeltrid | |- ( ( A e. NN0 /\ B e. NN ) -> R e. NN0 ) |
| 33 | 1 | oveq2i | |- ( ( A / B ) - Q ) = ( ( A / B ) - ( |_ ` ( A / B ) ) ) |
| 34 | fraclt1 | |- ( ( A / B ) e. RR -> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < 1 ) |
|
| 35 | 15 34 | syl | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < 1 ) |
| 36 | 33 35 | eqbrtrid | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( A / B ) - Q ) < 1 ) |
| 37 | 2 | oveq1i | |- ( R / B ) = ( ( A - ( B x. Q ) ) / B ) |
| 38 | nn0cn | |- ( A e. NN0 -> A e. CC ) |
|
| 39 | 38 | adantr | |- ( ( A e. NN0 /\ B e. NN ) -> A e. CC ) |
| 40 | 7 | nn0cnd | |- ( ( A e. NN0 /\ B e. NN ) -> ( B x. Q ) e. CC ) |
| 41 | 10 12 | jca | |- ( B e. NN -> ( B e. CC /\ B =/= 0 ) ) |
| 42 | 41 | adantl | |- ( ( A e. NN0 /\ B e. NN ) -> ( B e. CC /\ B =/= 0 ) ) |
| 43 | divsubdir | |- ( ( A e. CC /\ ( B x. Q ) e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A - ( B x. Q ) ) / B ) = ( ( A / B ) - ( ( B x. Q ) / B ) ) ) |
|
| 44 | 39 40 42 43 | syl3anc | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( A - ( B x. Q ) ) / B ) = ( ( A / B ) - ( ( B x. Q ) / B ) ) ) |
| 45 | 14 | oveq2d | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( A / B ) - ( ( B x. Q ) / B ) ) = ( ( A / B ) - Q ) ) |
| 46 | 44 45 | eqtrd | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( A - ( B x. Q ) ) / B ) = ( ( A / B ) - Q ) ) |
| 47 | 37 46 | eqtrid | |- ( ( A e. NN0 /\ B e. NN ) -> ( R / B ) = ( ( A / B ) - Q ) ) |
| 48 | 10 12 | dividd | |- ( B e. NN -> ( B / B ) = 1 ) |
| 49 | 48 | adantl | |- ( ( A e. NN0 /\ B e. NN ) -> ( B / B ) = 1 ) |
| 50 | 36 47 49 | 3brtr4d | |- ( ( A e. NN0 /\ B e. NN ) -> ( R / B ) < ( B / B ) ) |
| 51 | 32 | nn0red | |- ( ( A e. NN0 /\ B e. NN ) -> R e. RR ) |
| 52 | ltdiv1 | |- ( ( R e. RR /\ B e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( R < B <-> ( R / B ) < ( B / B ) ) ) |
|
| 53 | 51 24 24 26 52 | syl112anc | |- ( ( A e. NN0 /\ B e. NN ) -> ( R < B <-> ( R / B ) < ( B / B ) ) ) |
| 54 | 50 53 | mpbird | |- ( ( A e. NN0 /\ B e. NN ) -> R < B ) |
| 55 | 2 | oveq2i | |- ( ( B x. Q ) + R ) = ( ( B x. Q ) + ( A - ( B x. Q ) ) ) |
| 56 | 40 39 | pncan3d | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( B x. Q ) + ( A - ( B x. Q ) ) ) = A ) |
| 57 | 55 56 | eqtr2id | |- ( ( A e. NN0 /\ B e. NN ) -> A = ( ( B x. Q ) + R ) ) |
| 58 | 54 57 | jca | |- ( ( A e. NN0 /\ B e. NN ) -> ( R < B /\ A = ( ( B x. Q ) + R ) ) ) |
| 59 | 4 32 58 | jca31 | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( Q e. NN0 /\ R e. NN0 ) /\ ( R < B /\ A = ( ( B x. Q ) + R ) ) ) ) |