This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quotient and remainder of an integer divided by a positive integer. TODO - is this really needed for anything? Should we use mod to simplify it? Remark (AV): This is a special case of divalg . (Contributed by NM, 14-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | quorem.1 | |- Q = ( |_ ` ( A / B ) ) |
|
| quorem.2 | |- R = ( A - ( B x. Q ) ) |
||
| Assertion | quoremz | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( Q e. ZZ /\ R e. NN0 ) /\ ( R < B /\ A = ( ( B x. Q ) + R ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quorem.1 | |- Q = ( |_ ` ( A / B ) ) |
|
| 2 | quorem.2 | |- R = ( A - ( B x. Q ) ) |
|
| 3 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 4 | 3 | adantr | |- ( ( A e. ZZ /\ B e. NN ) -> A e. RR ) |
| 5 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 6 | 5 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> B e. RR ) |
| 7 | nnne0 | |- ( B e. NN -> B =/= 0 ) |
|
| 8 | 7 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> B =/= 0 ) |
| 9 | 4 6 8 | redivcld | |- ( ( A e. ZZ /\ B e. NN ) -> ( A / B ) e. RR ) |
| 10 | 9 | flcld | |- ( ( A e. ZZ /\ B e. NN ) -> ( |_ ` ( A / B ) ) e. ZZ ) |
| 11 | 1 10 | eqeltrid | |- ( ( A e. ZZ /\ B e. NN ) -> Q e. ZZ ) |
| 12 | 11 | zcnd | |- ( ( A e. ZZ /\ B e. NN ) -> Q e. CC ) |
| 13 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 14 | 13 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> B e. CC ) |
| 15 | 12 14 8 | divcan3d | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( B x. Q ) / B ) = Q ) |
| 16 | flle | |- ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) <_ ( A / B ) ) |
|
| 17 | 9 16 | syl | |- ( ( A e. ZZ /\ B e. NN ) -> ( |_ ` ( A / B ) ) <_ ( A / B ) ) |
| 18 | 1 17 | eqbrtrid | |- ( ( A e. ZZ /\ B e. NN ) -> Q <_ ( A / B ) ) |
| 19 | 15 18 | eqbrtrd | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( B x. Q ) / B ) <_ ( A / B ) ) |
| 20 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 21 | 20 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> B e. ZZ ) |
| 22 | 21 11 | zmulcld | |- ( ( A e. ZZ /\ B e. NN ) -> ( B x. Q ) e. ZZ ) |
| 23 | 22 | zred | |- ( ( A e. ZZ /\ B e. NN ) -> ( B x. Q ) e. RR ) |
| 24 | nngt0 | |- ( B e. NN -> 0 < B ) |
|
| 25 | 24 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> 0 < B ) |
| 26 | lediv1 | |- ( ( ( B x. Q ) e. RR /\ A e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( B x. Q ) <_ A <-> ( ( B x. Q ) / B ) <_ ( A / B ) ) ) |
|
| 27 | 23 4 6 25 26 | syl112anc | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( B x. Q ) <_ A <-> ( ( B x. Q ) / B ) <_ ( A / B ) ) ) |
| 28 | 19 27 | mpbird | |- ( ( A e. ZZ /\ B e. NN ) -> ( B x. Q ) <_ A ) |
| 29 | simpl | |- ( ( A e. ZZ /\ B e. NN ) -> A e. ZZ ) |
|
| 30 | znn0sub | |- ( ( ( B x. Q ) e. ZZ /\ A e. ZZ ) -> ( ( B x. Q ) <_ A <-> ( A - ( B x. Q ) ) e. NN0 ) ) |
|
| 31 | 22 29 30 | syl2anc | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( B x. Q ) <_ A <-> ( A - ( B x. Q ) ) e. NN0 ) ) |
| 32 | 28 31 | mpbid | |- ( ( A e. ZZ /\ B e. NN ) -> ( A - ( B x. Q ) ) e. NN0 ) |
| 33 | 2 32 | eqeltrid | |- ( ( A e. ZZ /\ B e. NN ) -> R e. NN0 ) |
| 34 | 1 | oveq2i | |- ( ( A / B ) - Q ) = ( ( A / B ) - ( |_ ` ( A / B ) ) ) |
| 35 | fraclt1 | |- ( ( A / B ) e. RR -> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < 1 ) |
|
| 36 | 9 35 | syl | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < 1 ) |
| 37 | 34 36 | eqbrtrid | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( A / B ) - Q ) < 1 ) |
| 38 | 2 | oveq1i | |- ( R / B ) = ( ( A - ( B x. Q ) ) / B ) |
| 39 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 40 | 39 | adantr | |- ( ( A e. ZZ /\ B e. NN ) -> A e. CC ) |
| 41 | 22 | zcnd | |- ( ( A e. ZZ /\ B e. NN ) -> ( B x. Q ) e. CC ) |
| 42 | 13 7 | jca | |- ( B e. NN -> ( B e. CC /\ B =/= 0 ) ) |
| 43 | 42 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> ( B e. CC /\ B =/= 0 ) ) |
| 44 | divsubdir | |- ( ( A e. CC /\ ( B x. Q ) e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A - ( B x. Q ) ) / B ) = ( ( A / B ) - ( ( B x. Q ) / B ) ) ) |
|
| 45 | 40 41 43 44 | syl3anc | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( A - ( B x. Q ) ) / B ) = ( ( A / B ) - ( ( B x. Q ) / B ) ) ) |
| 46 | 15 | oveq2d | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( A / B ) - ( ( B x. Q ) / B ) ) = ( ( A / B ) - Q ) ) |
| 47 | 45 46 | eqtrd | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( A - ( B x. Q ) ) / B ) = ( ( A / B ) - Q ) ) |
| 48 | 38 47 | eqtrid | |- ( ( A e. ZZ /\ B e. NN ) -> ( R / B ) = ( ( A / B ) - Q ) ) |
| 49 | 13 7 | dividd | |- ( B e. NN -> ( B / B ) = 1 ) |
| 50 | 49 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> ( B / B ) = 1 ) |
| 51 | 37 48 50 | 3brtr4d | |- ( ( A e. ZZ /\ B e. NN ) -> ( R / B ) < ( B / B ) ) |
| 52 | 33 | nn0red | |- ( ( A e. ZZ /\ B e. NN ) -> R e. RR ) |
| 53 | ltdiv1 | |- ( ( R e. RR /\ B e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( R < B <-> ( R / B ) < ( B / B ) ) ) |
|
| 54 | 52 6 6 25 53 | syl112anc | |- ( ( A e. ZZ /\ B e. NN ) -> ( R < B <-> ( R / B ) < ( B / B ) ) ) |
| 55 | 51 54 | mpbird | |- ( ( A e. ZZ /\ B e. NN ) -> R < B ) |
| 56 | 2 | oveq2i | |- ( ( B x. Q ) + R ) = ( ( B x. Q ) + ( A - ( B x. Q ) ) ) |
| 57 | 41 40 | pncan3d | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( B x. Q ) + ( A - ( B x. Q ) ) ) = A ) |
| 58 | 56 57 | eqtr2id | |- ( ( A e. ZZ /\ B e. NN ) -> A = ( ( B x. Q ) + R ) ) |
| 59 | 55 58 | jca | |- ( ( A e. ZZ /\ B e. NN ) -> ( R < B /\ A = ( ( B x. Q ) + R ) ) ) |
| 60 | 11 33 59 | jca31 | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( Q e. ZZ /\ R e. NN0 ) /\ ( R < B /\ A = ( ( B x. Q ) + R ) ) ) ) |