This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of quoremnn0 not using quoremz . TODO - Keep either quoremnn0ALT (if we don't keep quoremz ) or quoremnn0 ? (Contributed by NM, 14-Aug-2008) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | quorem.1 | ⊢ 𝑄 = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) | |
| quorem.2 | ⊢ 𝑅 = ( 𝐴 − ( 𝐵 · 𝑄 ) ) | ||
| Assertion | quoremnn0ALT | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ) ∧ ( 𝑅 < 𝐵 ∧ 𝐴 = ( ( 𝐵 · 𝑄 ) + 𝑅 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quorem.1 | ⊢ 𝑄 = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) | |
| 2 | quorem.2 | ⊢ 𝑅 = ( 𝐴 − ( 𝐵 · 𝑄 ) ) | |
| 3 | fldivnn0 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℕ0 ) | |
| 4 | 1 3 | eqeltrid | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝑄 ∈ ℕ0 ) |
| 5 | nnnn0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℕ0 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ0 ) |
| 7 | 6 4 | nn0mulcld | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐵 · 𝑄 ) ∈ ℕ0 ) |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℕ0 ) | |
| 9 | 4 | nn0cnd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝑄 ∈ ℂ ) |
| 10 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 12 | nnne0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝐵 ≠ 0 ) |
| 14 | 9 11 13 | divcan3d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐵 · 𝑄 ) / 𝐵 ) = 𝑄 ) |
| 15 | nn0nndivcl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 16 | flle | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ≤ ( 𝐴 / 𝐵 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ≤ ( 𝐴 / 𝐵 ) ) |
| 18 | 1 17 | eqbrtrid | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝑄 ≤ ( 𝐴 / 𝐵 ) ) |
| 19 | 14 18 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐵 · 𝑄 ) / 𝐵 ) ≤ ( 𝐴 / 𝐵 ) ) |
| 20 | 7 | nn0red | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐵 · 𝑄 ) ∈ ℝ ) |
| 21 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 23 | nnre | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
| 25 | nngt0 | ⊢ ( 𝐵 ∈ ℕ → 0 < 𝐵 ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 0 < 𝐵 ) |
| 27 | lediv1 | ⊢ ( ( ( 𝐵 · 𝑄 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐵 · 𝑄 ) ≤ 𝐴 ↔ ( ( 𝐵 · 𝑄 ) / 𝐵 ) ≤ ( 𝐴 / 𝐵 ) ) ) | |
| 28 | 20 22 24 26 27 | syl112anc | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐵 · 𝑄 ) ≤ 𝐴 ↔ ( ( 𝐵 · 𝑄 ) / 𝐵 ) ≤ ( 𝐴 / 𝐵 ) ) ) |
| 29 | 19 28 | mpbird | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐵 · 𝑄 ) ≤ 𝐴 ) |
| 30 | nn0sub2 | ⊢ ( ( ( 𝐵 · 𝑄 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ ( 𝐵 · 𝑄 ) ≤ 𝐴 ) → ( 𝐴 − ( 𝐵 · 𝑄 ) ) ∈ ℕ0 ) | |
| 31 | 7 8 29 30 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 − ( 𝐵 · 𝑄 ) ) ∈ ℕ0 ) |
| 32 | 2 31 | eqeltrid | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝑅 ∈ ℕ0 ) |
| 33 | 1 | oveq2i | ⊢ ( ( 𝐴 / 𝐵 ) − 𝑄 ) = ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) |
| 34 | fraclt1 | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) < 1 ) | |
| 35 | 15 34 | syl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) < 1 ) |
| 36 | 33 35 | eqbrtrid | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) − 𝑄 ) < 1 ) |
| 37 | 2 | oveq1i | ⊢ ( 𝑅 / 𝐵 ) = ( ( 𝐴 − ( 𝐵 · 𝑄 ) ) / 𝐵 ) |
| 38 | nn0cn | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) | |
| 39 | 38 | adantr | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 40 | 7 | nn0cnd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐵 · 𝑄 ) ∈ ℂ ) |
| 41 | 10 12 | jca | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 42 | 41 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 43 | divsubdir | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 · 𝑄 ) ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 − ( 𝐵 · 𝑄 ) ) / 𝐵 ) = ( ( 𝐴 / 𝐵 ) − ( ( 𝐵 · 𝑄 ) / 𝐵 ) ) ) | |
| 44 | 39 40 42 43 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 − ( 𝐵 · 𝑄 ) ) / 𝐵 ) = ( ( 𝐴 / 𝐵 ) − ( ( 𝐵 · 𝑄 ) / 𝐵 ) ) ) |
| 45 | 14 | oveq2d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) − ( ( 𝐵 · 𝑄 ) / 𝐵 ) ) = ( ( 𝐴 / 𝐵 ) − 𝑄 ) ) |
| 46 | 44 45 | eqtrd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 − ( 𝐵 · 𝑄 ) ) / 𝐵 ) = ( ( 𝐴 / 𝐵 ) − 𝑄 ) ) |
| 47 | 37 46 | eqtrid | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝑅 / 𝐵 ) = ( ( 𝐴 / 𝐵 ) − 𝑄 ) ) |
| 48 | 10 12 | dividd | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 / 𝐵 ) = 1 ) |
| 49 | 48 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐵 / 𝐵 ) = 1 ) |
| 50 | 36 47 49 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝑅 / 𝐵 ) < ( 𝐵 / 𝐵 ) ) |
| 51 | 32 | nn0red | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝑅 ∈ ℝ ) |
| 52 | ltdiv1 | ⊢ ( ( 𝑅 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝑅 < 𝐵 ↔ ( 𝑅 / 𝐵 ) < ( 𝐵 / 𝐵 ) ) ) | |
| 53 | 51 24 24 26 52 | syl112anc | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝑅 < 𝐵 ↔ ( 𝑅 / 𝐵 ) < ( 𝐵 / 𝐵 ) ) ) |
| 54 | 50 53 | mpbird | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝑅 < 𝐵 ) |
| 55 | 2 | oveq2i | ⊢ ( ( 𝐵 · 𝑄 ) + 𝑅 ) = ( ( 𝐵 · 𝑄 ) + ( 𝐴 − ( 𝐵 · 𝑄 ) ) ) |
| 56 | 40 39 | pncan3d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐵 · 𝑄 ) + ( 𝐴 − ( 𝐵 · 𝑄 ) ) ) = 𝐴 ) |
| 57 | 55 56 | eqtr2id | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝐴 = ( ( 𝐵 · 𝑄 ) + 𝑅 ) ) |
| 58 | 54 57 | jca | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝑅 < 𝐵 ∧ 𝐴 = ( ( 𝐵 · 𝑄 ) + 𝑅 ) ) ) |
| 59 | 4 32 58 | jca31 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ) ∧ ( 𝑅 < 𝐵 ∧ 𝐴 = ( ( 𝐵 · 𝑄 ) + 𝑅 ) ) ) ) |