This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quotient and remainder of a nonnegative integer divided by a positive integer. (Contributed by NM, 14-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | quorem.1 | |- Q = ( |_ ` ( A / B ) ) |
|
| quorem.2 | |- R = ( A - ( B x. Q ) ) |
||
| Assertion | quoremnn0 | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( Q e. NN0 /\ R e. NN0 ) /\ ( R < B /\ A = ( ( B x. Q ) + R ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quorem.1 | |- Q = ( |_ ` ( A / B ) ) |
|
| 2 | quorem.2 | |- R = ( A - ( B x. Q ) ) |
|
| 3 | fldivnn0 | |- ( ( A e. NN0 /\ B e. NN ) -> ( |_ ` ( A / B ) ) e. NN0 ) |
|
| 4 | 1 3 | eqeltrid | |- ( ( A e. NN0 /\ B e. NN ) -> Q e. NN0 ) |
| 5 | nn0z | |- ( A e. NN0 -> A e. ZZ ) |
|
| 6 | 1 2 | quoremz | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( Q e. ZZ /\ R e. NN0 ) /\ ( R < B /\ A = ( ( B x. Q ) + R ) ) ) ) |
| 7 | 5 6 | sylan | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( Q e. ZZ /\ R e. NN0 ) /\ ( R < B /\ A = ( ( B x. Q ) + R ) ) ) ) |
| 8 | simpl | |- ( ( Q e. NN0 /\ Q e. ZZ ) -> Q e. NN0 ) |
|
| 9 | 8 | anim1i | |- ( ( ( Q e. NN0 /\ Q e. ZZ ) /\ R e. NN0 ) -> ( Q e. NN0 /\ R e. NN0 ) ) |
| 10 | 9 | anasss | |- ( ( Q e. NN0 /\ ( Q e. ZZ /\ R e. NN0 ) ) -> ( Q e. NN0 /\ R e. NN0 ) ) |
| 11 | 10 | anim1i | |- ( ( ( Q e. NN0 /\ ( Q e. ZZ /\ R e. NN0 ) ) /\ ( R < B /\ A = ( ( B x. Q ) + R ) ) ) -> ( ( Q e. NN0 /\ R e. NN0 ) /\ ( R < B /\ A = ( ( B x. Q ) + R ) ) ) ) |
| 12 | 11 | anasss | |- ( ( Q e. NN0 /\ ( ( Q e. ZZ /\ R e. NN0 ) /\ ( R < B /\ A = ( ( B x. Q ) + R ) ) ) ) -> ( ( Q e. NN0 /\ R e. NN0 ) /\ ( R < B /\ A = ( ( B x. Q ) + R ) ) ) ) |
| 13 | 4 7 12 | syl2anc | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( Q e. NN0 /\ R e. NN0 ) /\ ( R < B /\ A = ( ( B x. Q ) + R ) ) ) ) |