This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0nndivcl | |- ( ( K e. NN0 /\ L e. NN ) -> ( K / L ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnnne0 | |- ( L e. NN <-> ( L e. NN0 /\ L =/= 0 ) ) |
|
| 2 | nn0re | |- ( K e. NN0 -> K e. RR ) |
|
| 3 | 2 | adantr | |- ( ( K e. NN0 /\ ( L e. NN0 /\ L =/= 0 ) ) -> K e. RR ) |
| 4 | nn0re | |- ( L e. NN0 -> L e. RR ) |
|
| 5 | 4 | ad2antrl | |- ( ( K e. NN0 /\ ( L e. NN0 /\ L =/= 0 ) ) -> L e. RR ) |
| 6 | simprr | |- ( ( K e. NN0 /\ ( L e. NN0 /\ L =/= 0 ) ) -> L =/= 0 ) |
|
| 7 | 3 5 6 | 3jca | |- ( ( K e. NN0 /\ ( L e. NN0 /\ L =/= 0 ) ) -> ( K e. RR /\ L e. RR /\ L =/= 0 ) ) |
| 8 | 1 7 | sylan2b | |- ( ( K e. NN0 /\ L e. NN ) -> ( K e. RR /\ L e. RR /\ L =/= 0 ) ) |
| 9 | redivcl | |- ( ( K e. RR /\ L e. RR /\ L =/= 0 ) -> ( K / L ) e. RR ) |
|
| 10 | 8 9 | syl | |- ( ( K e. NN0 /\ L e. NN ) -> ( K / L ) e. RR ) |