This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997) (Proof shortened by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvfo.1 | |- ( ( F ` x ) = y -> ( ph <-> ps ) ) |
|
| Assertion | cbvfo | |- ( F : A -onto-> B -> ( A. x e. A ph <-> A. y e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvfo.1 | |- ( ( F ` x ) = y -> ( ph <-> ps ) ) |
|
| 2 | fofn | |- ( F : A -onto-> B -> F Fn A ) |
|
| 3 | 1 | bicomd | |- ( ( F ` x ) = y -> ( ps <-> ph ) ) |
| 4 | 3 | eqcoms | |- ( y = ( F ` x ) -> ( ps <-> ph ) ) |
| 5 | 4 | ralrn | |- ( F Fn A -> ( A. y e. ran F ps <-> A. x e. A ph ) ) |
| 6 | 2 5 | syl | |- ( F : A -onto-> B -> ( A. y e. ran F ps <-> A. x e. A ph ) ) |
| 7 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
| 8 | 7 | raleqdv | |- ( F : A -onto-> B -> ( A. y e. ran F ps <-> A. y e. B ps ) ) |
| 9 | 6 8 | bitr3d | |- ( F : A -onto-> B -> ( A. x e. A ph <-> A. y e. B ps ) ) |