This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011) (Proof shortened by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cocan2 | |- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( ( H o. F ) = ( K o. F ) <-> H = K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof | |- ( F : A -onto-> B -> F : A --> B ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> F : A --> B ) |
| 3 | fvco3 | |- ( ( F : A --> B /\ y e. A ) -> ( ( H o. F ) ` y ) = ( H ` ( F ` y ) ) ) |
|
| 4 | 2 3 | sylan | |- ( ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) /\ y e. A ) -> ( ( H o. F ) ` y ) = ( H ` ( F ` y ) ) ) |
| 5 | fvco3 | |- ( ( F : A --> B /\ y e. A ) -> ( ( K o. F ) ` y ) = ( K ` ( F ` y ) ) ) |
|
| 6 | 2 5 | sylan | |- ( ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) /\ y e. A ) -> ( ( K o. F ) ` y ) = ( K ` ( F ` y ) ) ) |
| 7 | 4 6 | eqeq12d | |- ( ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) /\ y e. A ) -> ( ( ( H o. F ) ` y ) = ( ( K o. F ) ` y ) <-> ( H ` ( F ` y ) ) = ( K ` ( F ` y ) ) ) ) |
| 8 | 7 | ralbidva | |- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( A. y e. A ( ( H o. F ) ` y ) = ( ( K o. F ) ` y ) <-> A. y e. A ( H ` ( F ` y ) ) = ( K ` ( F ` y ) ) ) ) |
| 9 | fveq2 | |- ( ( F ` y ) = x -> ( H ` ( F ` y ) ) = ( H ` x ) ) |
|
| 10 | fveq2 | |- ( ( F ` y ) = x -> ( K ` ( F ` y ) ) = ( K ` x ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( ( F ` y ) = x -> ( ( H ` ( F ` y ) ) = ( K ` ( F ` y ) ) <-> ( H ` x ) = ( K ` x ) ) ) |
| 12 | 11 | cbvfo | |- ( F : A -onto-> B -> ( A. y e. A ( H ` ( F ` y ) ) = ( K ` ( F ` y ) ) <-> A. x e. B ( H ` x ) = ( K ` x ) ) ) |
| 13 | 12 | 3ad2ant1 | |- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( A. y e. A ( H ` ( F ` y ) ) = ( K ` ( F ` y ) ) <-> A. x e. B ( H ` x ) = ( K ` x ) ) ) |
| 14 | 8 13 | bitrd | |- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( A. y e. A ( ( H o. F ) ` y ) = ( ( K o. F ) ` y ) <-> A. x e. B ( H ` x ) = ( K ` x ) ) ) |
| 15 | simp2 | |- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> H Fn B ) |
|
| 16 | fnfco | |- ( ( H Fn B /\ F : A --> B ) -> ( H o. F ) Fn A ) |
|
| 17 | 15 2 16 | syl2anc | |- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( H o. F ) Fn A ) |
| 18 | simp3 | |- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> K Fn B ) |
|
| 19 | fnfco | |- ( ( K Fn B /\ F : A --> B ) -> ( K o. F ) Fn A ) |
|
| 20 | 18 2 19 | syl2anc | |- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( K o. F ) Fn A ) |
| 21 | eqfnfv | |- ( ( ( H o. F ) Fn A /\ ( K o. F ) Fn A ) -> ( ( H o. F ) = ( K o. F ) <-> A. y e. A ( ( H o. F ) ` y ) = ( ( K o. F ) ` y ) ) ) |
|
| 22 | 17 20 21 | syl2anc | |- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( ( H o. F ) = ( K o. F ) <-> A. y e. A ( ( H o. F ) ` y ) = ( ( K o. F ) ` y ) ) ) |
| 23 | eqfnfv | |- ( ( H Fn B /\ K Fn B ) -> ( H = K <-> A. x e. B ( H ` x ) = ( K ` x ) ) ) |
|
| 24 | 15 18 23 | syl2anc | |- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( H = K <-> A. x e. B ( H ` x ) = ( K ` x ) ) ) |
| 25 | 14 22 24 | 3bitr4d | |- ( ( F : A -onto-> B /\ H Fn B /\ K Fn B ) -> ( ( H o. F ) = ( K o. F ) <-> H = K ) ) |