This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007) (Proof shortened by JJ, 23-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqsn | |- ( A =/= (/) -> ( A = { B } <-> A. x e. A x = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 2 | biorf | |- ( -. A = (/) -> ( A = { B } <-> ( A = (/) \/ A = { B } ) ) ) |
|
| 3 | 1 2 | sylbi | |- ( A =/= (/) -> ( A = { B } <-> ( A = (/) \/ A = { B } ) ) ) |
| 4 | dfss3 | |- ( A C_ { B } <-> A. x e. A x e. { B } ) |
|
| 5 | sssn | |- ( A C_ { B } <-> ( A = (/) \/ A = { B } ) ) |
|
| 6 | velsn | |- ( x e. { B } <-> x = B ) |
|
| 7 | 6 | ralbii | |- ( A. x e. A x e. { B } <-> A. x e. A x = B ) |
| 8 | 4 5 7 | 3bitr3i | |- ( ( A = (/) \/ A = { B } ) <-> A. x e. A x = B ) |
| 9 | 3 8 | bitrdi | |- ( A =/= (/) -> ( A = { B } <-> A. x e. A x = B ) ) |