This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Wrap the previous M and N up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem18 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> E. n e. NN E. m e. NN ( A = ( ( m ^ 2 ) - ( n ^ 2 ) ) /\ B = ( 2 x. ( m x. n ) ) /\ C = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| 2 | 1 | pythagtriplem13 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) e. NN ) |
| 3 | eqid | |- ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| 4 | 3 | pythagtriplem11 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. NN ) |
| 5 | 3 1 | pythagtriplem15 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A = ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) - ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) |
| 6 | 3 1 | pythagtriplem16 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B = ( 2 x. ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) ) |
| 7 | 3 1 | pythagtriplem17 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C = ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) + ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) |
| 8 | oveq1 | |- ( n = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) -> ( n ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) |
|
| 9 | 8 | oveq2d | |- ( n = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) -> ( ( m ^ 2 ) - ( n ^ 2 ) ) = ( ( m ^ 2 ) - ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) |
| 10 | 9 | eqeq2d | |- ( n = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) -> ( A = ( ( m ^ 2 ) - ( n ^ 2 ) ) <-> A = ( ( m ^ 2 ) - ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) ) |
| 11 | oveq2 | |- ( n = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) -> ( m x. n ) = ( m x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) |
|
| 12 | 11 | oveq2d | |- ( n = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) -> ( 2 x. ( m x. n ) ) = ( 2 x. ( m x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) ) |
| 13 | 12 | eqeq2d | |- ( n = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) -> ( B = ( 2 x. ( m x. n ) ) <-> B = ( 2 x. ( m x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) ) ) |
| 14 | 8 | oveq2d | |- ( n = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) = ( ( m ^ 2 ) + ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) |
| 15 | 14 | eqeq2d | |- ( n = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) -> ( C = ( ( m ^ 2 ) + ( n ^ 2 ) ) <-> C = ( ( m ^ 2 ) + ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) ) |
| 16 | 10 13 15 | 3anbi123d | |- ( n = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) -> ( ( A = ( ( m ^ 2 ) - ( n ^ 2 ) ) /\ B = ( 2 x. ( m x. n ) ) /\ C = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) <-> ( A = ( ( m ^ 2 ) - ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) /\ B = ( 2 x. ( m x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) /\ C = ( ( m ^ 2 ) + ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) ) ) |
| 17 | oveq1 | |- ( m = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) -> ( m ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) |
|
| 18 | 17 | oveq1d | |- ( m = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) -> ( ( m ^ 2 ) - ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) = ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) - ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) |
| 19 | 18 | eqeq2d | |- ( m = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) -> ( A = ( ( m ^ 2 ) - ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) <-> A = ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) - ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) ) |
| 20 | oveq1 | |- ( m = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) -> ( m x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) |
|
| 21 | 20 | oveq2d | |- ( m = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) -> ( 2 x. ( m x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) = ( 2 x. ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) ) |
| 22 | 21 | eqeq2d | |- ( m = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) -> ( B = ( 2 x. ( m x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) <-> B = ( 2 x. ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) ) ) |
| 23 | 17 | oveq1d | |- ( m = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) -> ( ( m ^ 2 ) + ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) = ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) + ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) |
| 24 | 23 | eqeq2d | |- ( m = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) -> ( C = ( ( m ^ 2 ) + ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) <-> C = ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) + ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) ) |
| 25 | 19 22 24 | 3anbi123d | |- ( m = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) -> ( ( A = ( ( m ^ 2 ) - ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) /\ B = ( 2 x. ( m x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) /\ C = ( ( m ^ 2 ) + ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) <-> ( A = ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) - ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) /\ B = ( 2 x. ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) /\ C = ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) + ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) ) ) |
| 26 | 16 25 | rspc2ev | |- ( ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) e. NN /\ ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. NN /\ ( A = ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) - ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) /\ B = ( 2 x. ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) /\ C = ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) + ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) ) ) ) -> E. n e. NN E. m e. NN ( A = ( ( m ^ 2 ) - ( n ^ 2 ) ) /\ B = ( 2 x. ( m x. n ) ) /\ C = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) |
| 27 | 2 4 5 6 7 26 | syl113anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> E. n e. NN E. m e. NN ( A = ( ( m ^ 2 ) - ( n ^ 2 ) ) /\ B = ( 2 x. ( m x. n ) ) /\ C = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) |