This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of ismhm . (Contributed by SN, 27-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismhmd.b | |- B = ( Base ` S ) |
|
| ismhmd.c | |- C = ( Base ` T ) |
||
| ismhmd.p | |- .+ = ( +g ` S ) |
||
| ismhmd.q | |- .+^ = ( +g ` T ) |
||
| ismhmd.0 | |- .0. = ( 0g ` S ) |
||
| ismhmd.z | |- Z = ( 0g ` T ) |
||
| ismhmd.s | |- ( ph -> S e. Mnd ) |
||
| ismhmd.t | |- ( ph -> T e. Mnd ) |
||
| ismhmd.f | |- ( ph -> F : B --> C ) |
||
| ismhmd.a | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
||
| ismhmd.h | |- ( ph -> ( F ` .0. ) = Z ) |
||
| Assertion | ismhmd | |- ( ph -> F e. ( S MndHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismhmd.b | |- B = ( Base ` S ) |
|
| 2 | ismhmd.c | |- C = ( Base ` T ) |
|
| 3 | ismhmd.p | |- .+ = ( +g ` S ) |
|
| 4 | ismhmd.q | |- .+^ = ( +g ` T ) |
|
| 5 | ismhmd.0 | |- .0. = ( 0g ` S ) |
|
| 6 | ismhmd.z | |- Z = ( 0g ` T ) |
|
| 7 | ismhmd.s | |- ( ph -> S e. Mnd ) |
|
| 8 | ismhmd.t | |- ( ph -> T e. Mnd ) |
|
| 9 | ismhmd.f | |- ( ph -> F : B --> C ) |
|
| 10 | ismhmd.a | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
| 11 | ismhmd.h | |- ( ph -> ( F ` .0. ) = Z ) |
|
| 12 | 10 | ralrimivva | |- ( ph -> A. x e. B A. y e. B ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
| 13 | 9 12 11 | 3jca | |- ( ph -> ( F : B --> C /\ A. x e. B A. y e. B ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) /\ ( F ` .0. ) = Z ) ) |
| 14 | 1 2 3 4 5 6 | ismhm | |- ( F e. ( S MndHom T ) <-> ( ( S e. Mnd /\ T e. Mnd ) /\ ( F : B --> C /\ A. x e. B A. y e. B ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) /\ ( F ` .0. ) = Z ) ) ) |
| 15 | 7 8 13 14 | syl21anbrc | |- ( ph -> F e. ( S MndHom T ) ) |