This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a group exponentiation in a structure power. Compare pwsmulg . (Contributed by SN, 30-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsexpg.y | |- Y = ( R ^s I ) |
|
| pwsexpg.b | |- B = ( Base ` Y ) |
||
| pwsexpg.m | |- M = ( mulGrp ` Y ) |
||
| pwsexpg.t | |- T = ( mulGrp ` R ) |
||
| pwsexpg.s | |- .xb = ( .g ` M ) |
||
| pwsexpg.g | |- .x. = ( .g ` T ) |
||
| pwsexpg.r | |- ( ph -> R e. Ring ) |
||
| pwsexpg.i | |- ( ph -> I e. V ) |
||
| pwsexpg.n | |- ( ph -> N e. NN0 ) |
||
| pwsexpg.x | |- ( ph -> X e. B ) |
||
| pwsexpg.a | |- ( ph -> A e. I ) |
||
| Assertion | pwsexpg | |- ( ph -> ( ( N .xb X ) ` A ) = ( N .x. ( X ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsexpg.y | |- Y = ( R ^s I ) |
|
| 2 | pwsexpg.b | |- B = ( Base ` Y ) |
|
| 3 | pwsexpg.m | |- M = ( mulGrp ` Y ) |
|
| 4 | pwsexpg.t | |- T = ( mulGrp ` R ) |
|
| 5 | pwsexpg.s | |- .xb = ( .g ` M ) |
|
| 6 | pwsexpg.g | |- .x. = ( .g ` T ) |
|
| 7 | pwsexpg.r | |- ( ph -> R e. Ring ) |
|
| 8 | pwsexpg.i | |- ( ph -> I e. V ) |
|
| 9 | pwsexpg.n | |- ( ph -> N e. NN0 ) |
|
| 10 | pwsexpg.x | |- ( ph -> X e. B ) |
|
| 11 | pwsexpg.a | |- ( ph -> A e. I ) |
|
| 12 | 1 2 3 4 7 8 11 | pwspjmhmmgpd | |- ( ph -> ( x e. B |-> ( x ` A ) ) e. ( M MndHom T ) ) |
| 13 | 3 2 | mgpbas | |- B = ( Base ` M ) |
| 14 | 13 5 6 | mhmmulg | |- ( ( ( x e. B |-> ( x ` A ) ) e. ( M MndHom T ) /\ N e. NN0 /\ X e. B ) -> ( ( x e. B |-> ( x ` A ) ) ` ( N .xb X ) ) = ( N .x. ( ( x e. B |-> ( x ` A ) ) ` X ) ) ) |
| 15 | 12 9 10 14 | syl3anc | |- ( ph -> ( ( x e. B |-> ( x ` A ) ) ` ( N .xb X ) ) = ( N .x. ( ( x e. B |-> ( x ` A ) ) ` X ) ) ) |
| 16 | 1 | pwsring | |- ( ( R e. Ring /\ I e. V ) -> Y e. Ring ) |
| 17 | 7 8 16 | syl2anc | |- ( ph -> Y e. Ring ) |
| 18 | 3 | ringmgp | |- ( Y e. Ring -> M e. Mnd ) |
| 19 | 17 18 | syl | |- ( ph -> M e. Mnd ) |
| 20 | 13 5 19 9 10 | mulgnn0cld | |- ( ph -> ( N .xb X ) e. B ) |
| 21 | fveq1 | |- ( x = ( N .xb X ) -> ( x ` A ) = ( ( N .xb X ) ` A ) ) |
|
| 22 | eqid | |- ( x e. B |-> ( x ` A ) ) = ( x e. B |-> ( x ` A ) ) |
|
| 23 | fvex | |- ( ( N .xb X ) ` A ) e. _V |
|
| 24 | 21 22 23 | fvmpt | |- ( ( N .xb X ) e. B -> ( ( x e. B |-> ( x ` A ) ) ` ( N .xb X ) ) = ( ( N .xb X ) ` A ) ) |
| 25 | 20 24 | syl | |- ( ph -> ( ( x e. B |-> ( x ` A ) ) ` ( N .xb X ) ) = ( ( N .xb X ) ` A ) ) |
| 26 | fveq1 | |- ( x = X -> ( x ` A ) = ( X ` A ) ) |
|
| 27 | fvex | |- ( X ` A ) e. _V |
|
| 28 | 26 22 27 | fvmpt | |- ( X e. B -> ( ( x e. B |-> ( x ` A ) ) ` X ) = ( X ` A ) ) |
| 29 | 10 28 | syl | |- ( ph -> ( ( x e. B |-> ( x ` A ) ) ` X ) = ( X ` A ) ) |
| 30 | 29 | oveq2d | |- ( ph -> ( N .x. ( ( x e. B |-> ( x ` A ) ) ` X ) ) = ( N .x. ( X ` A ) ) ) |
| 31 | 15 25 30 | 3eqtr3d | |- ( ph -> ( ( N .xb X ) ` A ) = ( N .x. ( X ` A ) ) ) |