This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projection from a structure power of a monoid to the monoid itself is a monoid homomorphism. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwspjmhm.y | |- Y = ( R ^s I ) |
|
| pwspjmhm.b | |- B = ( Base ` Y ) |
||
| Assertion | pwspjmhm | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( x e. B |-> ( x ` A ) ) e. ( Y MndHom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwspjmhm.y | |- Y = ( R ^s I ) |
|
| 2 | pwspjmhm.b | |- B = ( Base ` Y ) |
|
| 3 | eqid | |- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
|
| 4 | eqid | |- ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
|
| 5 | simp2 | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> I e. V ) |
|
| 6 | fvexd | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( Scalar ` R ) e. _V ) |
|
| 7 | fconst6g | |- ( R e. Mnd -> ( I X. { R } ) : I --> Mnd ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( I X. { R } ) : I --> Mnd ) |
| 9 | simp3 | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> A e. I ) |
|
| 10 | 3 4 5 6 8 9 | prdspjmhm | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( x e. ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |-> ( x ` A ) ) e. ( ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) MndHom ( ( I X. { R } ) ` A ) ) ) |
| 11 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 12 | 1 11 | pwsval | |- ( ( R e. Mnd /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 13 | 12 | 3adant3 | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 14 | 13 | fveq2d | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( Base ` Y ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 15 | 2 14 | eqtrid | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> B = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 16 | 15 | mpteq1d | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( x e. B |-> ( x ` A ) ) = ( x e. ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |-> ( x ` A ) ) ) |
| 17 | fvconst2g | |- ( ( R e. Mnd /\ A e. I ) -> ( ( I X. { R } ) ` A ) = R ) |
|
| 18 | 17 | 3adant2 | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( ( I X. { R } ) ` A ) = R ) |
| 19 | 18 | eqcomd | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> R = ( ( I X. { R } ) ` A ) ) |
| 20 | 13 19 | oveq12d | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( Y MndHom R ) = ( ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) MndHom ( ( I X. { R } ) ` A ) ) ) |
| 21 | 10 16 20 | 3eltr4d | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( x e. B |-> ( x ` A ) ) e. ( Y MndHom R ) ) |