This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ring unity in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pws1.y | |- Y = ( R ^s I ) |
|
| pws1.o | |- .1. = ( 1r ` R ) |
||
| Assertion | pws1 | |- ( ( R e. Ring /\ I e. V ) -> ( I X. { .1. } ) = ( 1r ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pws1.y | |- Y = ( R ^s I ) |
|
| 2 | pws1.o | |- .1. = ( 1r ` R ) |
|
| 3 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 4 | 1 3 | pwsval | |- ( ( R e. Ring /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 5 | 4 | fveq2d | |- ( ( R e. Ring /\ I e. V ) -> ( 1r ` Y ) = ( 1r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 6 | eqid | |- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
|
| 7 | simpr | |- ( ( R e. Ring /\ I e. V ) -> I e. V ) |
|
| 8 | fvexd | |- ( ( R e. Ring /\ I e. V ) -> ( Scalar ` R ) e. _V ) |
|
| 9 | fconst6g | |- ( R e. Ring -> ( I X. { R } ) : I --> Ring ) |
|
| 10 | 9 | adantr | |- ( ( R e. Ring /\ I e. V ) -> ( I X. { R } ) : I --> Ring ) |
| 11 | 6 7 8 10 | prds1 | |- ( ( R e. Ring /\ I e. V ) -> ( 1r o. ( I X. { R } ) ) = ( 1r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 12 | fn0g | |- 0g Fn _V |
|
| 13 | fnmgp | |- mulGrp Fn _V |
|
| 14 | ssv | |- ran mulGrp C_ _V |
|
| 15 | 14 | a1i | |- ( ( R e. Ring /\ I e. V ) -> ran mulGrp C_ _V ) |
| 16 | fnco | |- ( ( 0g Fn _V /\ mulGrp Fn _V /\ ran mulGrp C_ _V ) -> ( 0g o. mulGrp ) Fn _V ) |
|
| 17 | 12 13 15 16 | mp3an12i | |- ( ( R e. Ring /\ I e. V ) -> ( 0g o. mulGrp ) Fn _V ) |
| 18 | df-ur | |- 1r = ( 0g o. mulGrp ) |
|
| 19 | 18 | fneq1i | |- ( 1r Fn _V <-> ( 0g o. mulGrp ) Fn _V ) |
| 20 | 17 19 | sylibr | |- ( ( R e. Ring /\ I e. V ) -> 1r Fn _V ) |
| 21 | elex | |- ( R e. Ring -> R e. _V ) |
|
| 22 | 21 | adantr | |- ( ( R e. Ring /\ I e. V ) -> R e. _V ) |
| 23 | fcoconst | |- ( ( 1r Fn _V /\ R e. _V ) -> ( 1r o. ( I X. { R } ) ) = ( I X. { ( 1r ` R ) } ) ) |
|
| 24 | 20 22 23 | syl2anc | |- ( ( R e. Ring /\ I e. V ) -> ( 1r o. ( I X. { R } ) ) = ( I X. { ( 1r ` R ) } ) ) |
| 25 | 2 | sneqi | |- { .1. } = { ( 1r ` R ) } |
| 26 | 25 | xpeq2i | |- ( I X. { .1. } ) = ( I X. { ( 1r ` R ) } ) |
| 27 | 24 26 | eqtr4di | |- ( ( R e. Ring /\ I e. V ) -> ( 1r o. ( I X. { R } ) ) = ( I X. { .1. } ) ) |
| 28 | 5 11 27 | 3eqtr2rd | |- ( ( R e. Ring /\ I e. V ) -> ( I X. { .1. } ) = ( 1r ` Y ) ) |