This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuexb | |- ( ( A e. _V /\ B e. _V ) <-> ( A |_| B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuex | |- ( ( A e. _V /\ B e. _V ) -> ( A |_| B ) e. _V ) |
|
| 2 | df-dju | |- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
|
| 3 | 2 | eleq1i | |- ( ( A |_| B ) e. _V <-> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) e. _V ) |
| 4 | unexb | |- ( ( ( { (/) } X. A ) e. _V /\ ( { 1o } X. B ) e. _V ) <-> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) e. _V ) |
|
| 5 | 3 4 | bitr4i | |- ( ( A |_| B ) e. _V <-> ( ( { (/) } X. A ) e. _V /\ ( { 1o } X. B ) e. _V ) ) |
| 6 | 0nep0 | |- (/) =/= { (/) } |
|
| 7 | 6 | necomi | |- { (/) } =/= (/) |
| 8 | rnexg | |- ( ( { (/) } X. A ) e. _V -> ran ( { (/) } X. A ) e. _V ) |
|
| 9 | rnxp | |- ( { (/) } =/= (/) -> ran ( { (/) } X. A ) = A ) |
|
| 10 | 9 | eleq1d | |- ( { (/) } =/= (/) -> ( ran ( { (/) } X. A ) e. _V <-> A e. _V ) ) |
| 11 | 8 10 | imbitrid | |- ( { (/) } =/= (/) -> ( ( { (/) } X. A ) e. _V -> A e. _V ) ) |
| 12 | 7 11 | ax-mp | |- ( ( { (/) } X. A ) e. _V -> A e. _V ) |
| 13 | 1oex | |- 1o e. _V |
|
| 14 | 13 | snnz | |- { 1o } =/= (/) |
| 15 | rnexg | |- ( ( { 1o } X. B ) e. _V -> ran ( { 1o } X. B ) e. _V ) |
|
| 16 | rnxp | |- ( { 1o } =/= (/) -> ran ( { 1o } X. B ) = B ) |
|
| 17 | 16 | eleq1d | |- ( { 1o } =/= (/) -> ( ran ( { 1o } X. B ) e. _V <-> B e. _V ) ) |
| 18 | 15 17 | imbitrid | |- ( { 1o } =/= (/) -> ( ( { 1o } X. B ) e. _V -> B e. _V ) ) |
| 19 | 14 18 | ax-mp | |- ( ( { 1o } X. B ) e. _V -> B e. _V ) |
| 20 | 12 19 | anim12i | |- ( ( ( { (/) } X. A ) e. _V /\ ( { 1o } X. B ) e. _V ) -> ( A e. _V /\ B e. _V ) ) |
| 21 | 5 20 | sylbi | |- ( ( A |_| B ) e. _V -> ( A e. _V /\ B e. _V ) ) |
| 22 | 1 21 | impbii | |- ( ( A e. _V /\ B e. _V ) <-> ( A |_| B ) e. _V ) |