This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of TakeutiZaring p. 91. See also infpssALT . (Contributed by NM, 23-Oct-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infpss | |- ( _om ~<_ A -> E. x ( x C. A /\ x ~~ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infn0 | |- ( _om ~<_ A -> A =/= (/) ) |
|
| 2 | n0 | |- ( A =/= (/) <-> E. y y e. A ) |
|
| 3 | 1 2 | sylib | |- ( _om ~<_ A -> E. y y e. A ) |
| 4 | reldom | |- Rel ~<_ |
|
| 5 | 4 | brrelex2i | |- ( _om ~<_ A -> A e. _V ) |
| 6 | 5 | difexd | |- ( _om ~<_ A -> ( A \ { y } ) e. _V ) |
| 7 | 6 | adantr | |- ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) e. _V ) |
| 8 | simpr | |- ( ( _om ~<_ A /\ y e. A ) -> y e. A ) |
|
| 9 | difsnpss | |- ( y e. A <-> ( A \ { y } ) C. A ) |
|
| 10 | 8 9 | sylib | |- ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) C. A ) |
| 11 | infdifsn | |- ( _om ~<_ A -> ( A \ { y } ) ~~ A ) |
|
| 12 | 11 | adantr | |- ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) ~~ A ) |
| 13 | 10 12 | jca | |- ( ( _om ~<_ A /\ y e. A ) -> ( ( A \ { y } ) C. A /\ ( A \ { y } ) ~~ A ) ) |
| 14 | psseq1 | |- ( x = ( A \ { y } ) -> ( x C. A <-> ( A \ { y } ) C. A ) ) |
|
| 15 | breq1 | |- ( x = ( A \ { y } ) -> ( x ~~ A <-> ( A \ { y } ) ~~ A ) ) |
|
| 16 | 14 15 | anbi12d | |- ( x = ( A \ { y } ) -> ( ( x C. A /\ x ~~ A ) <-> ( ( A \ { y } ) C. A /\ ( A \ { y } ) ~~ A ) ) ) |
| 17 | 7 13 16 | spcedv | |- ( ( _om ~<_ A /\ y e. A ) -> E. x ( x C. A /\ x ~~ A ) ) |
| 18 | 3 17 | exlimddv | |- ( _om ~<_ A -> E. x ( x C. A /\ x ~~ A ) ) |