This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 , equivalent to canth ). (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | canthwdom | |- -. ~P A ~<_* A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw | |- (/) e. ~P A |
|
| 2 | ne0i | |- ( (/) e. ~P A -> ~P A =/= (/) ) |
|
| 3 | 1 2 | mp1i | |- ( ~P A ~<_* A -> ~P A =/= (/) ) |
| 4 | brwdomn0 | |- ( ~P A =/= (/) -> ( ~P A ~<_* A <-> E. f f : A -onto-> ~P A ) ) |
|
| 5 | 3 4 | syl | |- ( ~P A ~<_* A -> ( ~P A ~<_* A <-> E. f f : A -onto-> ~P A ) ) |
| 6 | 5 | ibi | |- ( ~P A ~<_* A -> E. f f : A -onto-> ~P A ) |
| 7 | relwdom | |- Rel ~<_* |
|
| 8 | 7 | brrelex2i | |- ( ~P A ~<_* A -> A e. _V ) |
| 9 | foeq2 | |- ( x = A -> ( f : x -onto-> ~P x <-> f : A -onto-> ~P x ) ) |
|
| 10 | pweq | |- ( x = A -> ~P x = ~P A ) |
|
| 11 | foeq3 | |- ( ~P x = ~P A -> ( f : A -onto-> ~P x <-> f : A -onto-> ~P A ) ) |
|
| 12 | 10 11 | syl | |- ( x = A -> ( f : A -onto-> ~P x <-> f : A -onto-> ~P A ) ) |
| 13 | 9 12 | bitrd | |- ( x = A -> ( f : x -onto-> ~P x <-> f : A -onto-> ~P A ) ) |
| 14 | 13 | notbid | |- ( x = A -> ( -. f : x -onto-> ~P x <-> -. f : A -onto-> ~P A ) ) |
| 15 | vex | |- x e. _V |
|
| 16 | 15 | canth | |- -. f : x -onto-> ~P x |
| 17 | 14 16 | vtoclg | |- ( A e. _V -> -. f : A -onto-> ~P A ) |
| 18 | 8 17 | syl | |- ( ~P A ~<_* A -> -. f : A -onto-> ~P A ) |
| 19 | 18 | nexdv | |- ( ~P A ~<_* A -> -. E. f f : A -onto-> ~P A ) |
| 20 | 6 19 | pm2.65i | |- -. ~P A ~<_* A |