This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011) (Proof shortened by Mario Carneiro, 31-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resixp | |- ( ( B C_ A /\ F e. X_ x e. A C ) -> ( F |` B ) e. X_ x e. B C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexg | |- ( F e. X_ x e. A C -> ( F |` B ) e. _V ) |
|
| 2 | 1 | adantl | |- ( ( B C_ A /\ F e. X_ x e. A C ) -> ( F |` B ) e. _V ) |
| 3 | simpr | |- ( ( B C_ A /\ F e. X_ x e. A C ) -> F e. X_ x e. A C ) |
|
| 4 | elixp2 | |- ( F e. X_ x e. A C <-> ( F e. _V /\ F Fn A /\ A. x e. A ( F ` x ) e. C ) ) |
|
| 5 | 3 4 | sylib | |- ( ( B C_ A /\ F e. X_ x e. A C ) -> ( F e. _V /\ F Fn A /\ A. x e. A ( F ` x ) e. C ) ) |
| 6 | 5 | simp2d | |- ( ( B C_ A /\ F e. X_ x e. A C ) -> F Fn A ) |
| 7 | simpl | |- ( ( B C_ A /\ F e. X_ x e. A C ) -> B C_ A ) |
|
| 8 | fnssres | |- ( ( F Fn A /\ B C_ A ) -> ( F |` B ) Fn B ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ( B C_ A /\ F e. X_ x e. A C ) -> ( F |` B ) Fn B ) |
| 10 | 5 | simp3d | |- ( ( B C_ A /\ F e. X_ x e. A C ) -> A. x e. A ( F ` x ) e. C ) |
| 11 | ssralv | |- ( B C_ A -> ( A. x e. A ( F ` x ) e. C -> A. x e. B ( F ` x ) e. C ) ) |
|
| 12 | 7 10 11 | sylc | |- ( ( B C_ A /\ F e. X_ x e. A C ) -> A. x e. B ( F ` x ) e. C ) |
| 13 | fvres | |- ( x e. B -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
|
| 14 | 13 | eleq1d | |- ( x e. B -> ( ( ( F |` B ) ` x ) e. C <-> ( F ` x ) e. C ) ) |
| 15 | 14 | ralbiia | |- ( A. x e. B ( ( F |` B ) ` x ) e. C <-> A. x e. B ( F ` x ) e. C ) |
| 16 | 12 15 | sylibr | |- ( ( B C_ A /\ F e. X_ x e. A C ) -> A. x e. B ( ( F |` B ) ` x ) e. C ) |
| 17 | elixp2 | |- ( ( F |` B ) e. X_ x e. B C <-> ( ( F |` B ) e. _V /\ ( F |` B ) Fn B /\ A. x e. B ( ( F |` B ) ` x ) e. C ) ) |
|
| 18 | 2 9 16 17 | syl3anbrc | |- ( ( B C_ A /\ F e. X_ x e. A C ) -> ( F |` B ) e. X_ x e. B C ) |