This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Mario Carneiro, 16-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fresaunres1 | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` A ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom | |- ( F u. G ) = ( G u. F ) |
|
| 2 | 1 | reseq1i | |- ( ( F u. G ) |` A ) = ( ( G u. F ) |` A ) |
| 3 | incom | |- ( A i^i B ) = ( B i^i A ) |
|
| 4 | 3 | reseq2i | |- ( F |` ( A i^i B ) ) = ( F |` ( B i^i A ) ) |
| 5 | 3 | reseq2i | |- ( G |` ( A i^i B ) ) = ( G |` ( B i^i A ) ) |
| 6 | 4 5 | eqeq12i | |- ( ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) <-> ( F |` ( B i^i A ) ) = ( G |` ( B i^i A ) ) ) |
| 7 | eqcom | |- ( ( F |` ( B i^i A ) ) = ( G |` ( B i^i A ) ) <-> ( G |` ( B i^i A ) ) = ( F |` ( B i^i A ) ) ) |
|
| 8 | 6 7 | bitri | |- ( ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) <-> ( G |` ( B i^i A ) ) = ( F |` ( B i^i A ) ) ) |
| 9 | fresaunres2 | |- ( ( G : B --> C /\ F : A --> C /\ ( G |` ( B i^i A ) ) = ( F |` ( B i^i A ) ) ) -> ( ( G u. F ) |` A ) = F ) |
|
| 10 | 9 | 3com12 | |- ( ( F : A --> C /\ G : B --> C /\ ( G |` ( B i^i A ) ) = ( F |` ( B i^i A ) ) ) -> ( ( G u. F ) |` A ) = F ) |
| 11 | 8 10 | syl3an3b | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( G u. F ) |` A ) = F ) |
| 12 | 2 11 | eqtrid | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` A ) = F ) |