This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015) (Revised by Mario Carneiro, 3-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrplusgpropd.b1 | |- ( ph -> B = ( Base ` R ) ) |
|
| psrplusgpropd.b2 | |- ( ph -> B = ( Base ` S ) ) |
||
| psrplusgpropd.p | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
||
| Assertion | psrplusgpropd | |- ( ph -> ( +g ` ( I mPwSer R ) ) = ( +g ` ( I mPwSer S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrplusgpropd.b1 | |- ( ph -> B = ( Base ` R ) ) |
|
| 2 | psrplusgpropd.b2 | |- ( ph -> B = ( Base ` S ) ) |
|
| 3 | psrplusgpropd.p | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
|
| 4 | simpl1 | |- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ph ) |
|
| 5 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 6 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 7 | eqid | |- { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } = { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } |
|
| 8 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 9 | simp2 | |- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> a e. ( Base ` ( I mPwSer R ) ) ) |
|
| 10 | 5 6 7 8 9 | psrelbas | |- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> a : { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } --> ( Base ` R ) ) |
| 11 | 10 | ffvelcdmda | |- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( a ` d ) e. ( Base ` R ) ) |
| 12 | 4 1 | syl | |- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> B = ( Base ` R ) ) |
| 13 | 11 12 | eleqtrrd | |- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( a ` d ) e. B ) |
| 14 | simp3 | |- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> b e. ( Base ` ( I mPwSer R ) ) ) |
|
| 15 | 5 6 7 8 14 | psrelbas | |- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> b : { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } --> ( Base ` R ) ) |
| 16 | 15 | ffvelcdmda | |- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( b ` d ) e. ( Base ` R ) ) |
| 17 | 16 12 | eleqtrrd | |- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( b ` d ) e. B ) |
| 18 | 3 | oveqrspc2v | |- ( ( ph /\ ( ( a ` d ) e. B /\ ( b ` d ) e. B ) ) -> ( ( a ` d ) ( +g ` R ) ( b ` d ) ) = ( ( a ` d ) ( +g ` S ) ( b ` d ) ) ) |
| 19 | 4 13 17 18 | syl12anc | |- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( ( a ` d ) ( +g ` R ) ( b ` d ) ) = ( ( a ` d ) ( +g ` S ) ( b ` d ) ) ) |
| 20 | 19 | mpteq2dva | |- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> ( d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } |-> ( ( a ` d ) ( +g ` R ) ( b ` d ) ) ) = ( d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } |-> ( ( a ` d ) ( +g ` S ) ( b ` d ) ) ) ) |
| 21 | 10 | ffnd | |- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> a Fn { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) |
| 22 | 15 | ffnd | |- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> b Fn { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) |
| 23 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 24 | 23 | rabex | |- { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } e. _V |
| 25 | 24 | a1i | |- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } e. _V ) |
| 26 | inidm | |- ( { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } i^i { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) = { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } |
|
| 27 | eqidd | |- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( a ` d ) = ( a ` d ) ) |
|
| 28 | eqidd | |- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( b ` d ) = ( b ` d ) ) |
|
| 29 | 21 22 25 25 26 27 28 | offval | |- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> ( a oF ( +g ` R ) b ) = ( d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } |-> ( ( a ` d ) ( +g ` R ) ( b ` d ) ) ) ) |
| 30 | 21 22 25 25 26 27 28 | offval | |- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> ( a oF ( +g ` S ) b ) = ( d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } |-> ( ( a ` d ) ( +g ` S ) ( b ` d ) ) ) ) |
| 31 | 20 29 30 | 3eqtr4d | |- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> ( a oF ( +g ` R ) b ) = ( a oF ( +g ` S ) b ) ) |
| 32 | 31 | mpoeq3dva | |- ( ph -> ( a e. ( Base ` ( I mPwSer R ) ) , b e. ( Base ` ( I mPwSer R ) ) |-> ( a oF ( +g ` R ) b ) ) = ( a e. ( Base ` ( I mPwSer R ) ) , b e. ( Base ` ( I mPwSer R ) ) |-> ( a oF ( +g ` S ) b ) ) ) |
| 33 | 1 2 | eqtr3d | |- ( ph -> ( Base ` R ) = ( Base ` S ) ) |
| 34 | 33 | psrbaspropd | |- ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |
| 35 | mpoeq12 | |- ( ( ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) /\ ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) -> ( a e. ( Base ` ( I mPwSer R ) ) , b e. ( Base ` ( I mPwSer R ) ) |-> ( a oF ( +g ` S ) b ) ) = ( a e. ( Base ` ( I mPwSer S ) ) , b e. ( Base ` ( I mPwSer S ) ) |-> ( a oF ( +g ` S ) b ) ) ) |
|
| 36 | 34 34 35 | syl2anc | |- ( ph -> ( a e. ( Base ` ( I mPwSer R ) ) , b e. ( Base ` ( I mPwSer R ) ) |-> ( a oF ( +g ` S ) b ) ) = ( a e. ( Base ` ( I mPwSer S ) ) , b e. ( Base ` ( I mPwSer S ) ) |-> ( a oF ( +g ` S ) b ) ) ) |
| 37 | 32 36 | eqtrd | |- ( ph -> ( a e. ( Base ` ( I mPwSer R ) ) , b e. ( Base ` ( I mPwSer R ) ) |-> ( a oF ( +g ` R ) b ) ) = ( a e. ( Base ` ( I mPwSer S ) ) , b e. ( Base ` ( I mPwSer S ) ) |-> ( a oF ( +g ` S ) b ) ) ) |
| 38 | ofmres | |- ( oF ( +g ` R ) |` ( ( Base ` ( I mPwSer R ) ) X. ( Base ` ( I mPwSer R ) ) ) ) = ( a e. ( Base ` ( I mPwSer R ) ) , b e. ( Base ` ( I mPwSer R ) ) |-> ( a oF ( +g ` R ) b ) ) |
|
| 39 | ofmres | |- ( oF ( +g ` S ) |` ( ( Base ` ( I mPwSer S ) ) X. ( Base ` ( I mPwSer S ) ) ) ) = ( a e. ( Base ` ( I mPwSer S ) ) , b e. ( Base ` ( I mPwSer S ) ) |-> ( a oF ( +g ` S ) b ) ) |
|
| 40 | 37 38 39 | 3eqtr4g | |- ( ph -> ( oF ( +g ` R ) |` ( ( Base ` ( I mPwSer R ) ) X. ( Base ` ( I mPwSer R ) ) ) ) = ( oF ( +g ` S ) |` ( ( Base ` ( I mPwSer S ) ) X. ( Base ` ( I mPwSer S ) ) ) ) ) |
| 41 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 42 | eqid | |- ( +g ` ( I mPwSer R ) ) = ( +g ` ( I mPwSer R ) ) |
|
| 43 | 5 8 41 42 | psrplusg | |- ( +g ` ( I mPwSer R ) ) = ( oF ( +g ` R ) |` ( ( Base ` ( I mPwSer R ) ) X. ( Base ` ( I mPwSer R ) ) ) ) |
| 44 | eqid | |- ( I mPwSer S ) = ( I mPwSer S ) |
|
| 45 | eqid | |- ( Base ` ( I mPwSer S ) ) = ( Base ` ( I mPwSer S ) ) |
|
| 46 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 47 | eqid | |- ( +g ` ( I mPwSer S ) ) = ( +g ` ( I mPwSer S ) ) |
|
| 48 | 44 45 46 47 | psrplusg | |- ( +g ` ( I mPwSer S ) ) = ( oF ( +g ` S ) |` ( ( Base ` ( I mPwSer S ) ) X. ( Base ` ( I mPwSer S ) ) ) ) |
| 49 | 40 43 48 | 3eqtr4g | |- ( ph -> ( +g ` ( I mPwSer R ) ) = ( +g ` ( I mPwSer S ) ) ) |