This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015) (Revised by Mario Carneiro, 3-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrplusgpropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| psrplusgpropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) | ||
| psrplusgpropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | ||
| Assertion | psrplusgpropd | ⊢ ( 𝜑 → ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( +g ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrplusgpropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| 2 | psrplusgpropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) | |
| 3 | psrplusgpropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | |
| 4 | simpl1 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ 𝑑 ∈ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ) → 𝜑 ) | |
| 5 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 7 | eqid | ⊢ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } = { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } | |
| 8 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 9 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) | |
| 10 | 5 6 7 8 9 | psrelbas | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → 𝑎 : { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ 𝑑 ∈ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ) → ( 𝑎 ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) |
| 12 | 4 1 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ 𝑑 ∈ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 13 | 11 12 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ 𝑑 ∈ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ) → ( 𝑎 ‘ 𝑑 ) ∈ 𝐵 ) |
| 14 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) | |
| 15 | 5 6 7 8 14 | psrelbas | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → 𝑏 : { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 16 | 15 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ 𝑑 ∈ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ) → ( 𝑏 ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 | 16 12 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ 𝑑 ∈ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ) → ( 𝑏 ‘ 𝑑 ) ∈ 𝐵 ) |
| 18 | 3 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ‘ 𝑑 ) ∈ 𝐵 ∧ ( 𝑏 ‘ 𝑑 ) ∈ 𝐵 ) ) → ( ( 𝑎 ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( 𝑏 ‘ 𝑑 ) ) = ( ( 𝑎 ‘ 𝑑 ) ( +g ‘ 𝑆 ) ( 𝑏 ‘ 𝑑 ) ) ) |
| 19 | 4 13 17 18 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ 𝑑 ∈ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ) → ( ( 𝑎 ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( 𝑏 ‘ 𝑑 ) ) = ( ( 𝑎 ‘ 𝑑 ) ( +g ‘ 𝑆 ) ( 𝑏 ‘ 𝑑 ) ) ) |
| 20 | 19 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( 𝑑 ∈ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ↦ ( ( 𝑎 ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( 𝑏 ‘ 𝑑 ) ) ) = ( 𝑑 ∈ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ↦ ( ( 𝑎 ‘ 𝑑 ) ( +g ‘ 𝑆 ) ( 𝑏 ‘ 𝑑 ) ) ) ) |
| 21 | 10 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → 𝑎 Fn { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ) |
| 22 | 15 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → 𝑏 Fn { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ) |
| 23 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 24 | 23 | rabex | ⊢ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ∈ V |
| 25 | 24 | a1i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ∈ V ) |
| 26 | inidm | ⊢ ( { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ∩ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ) = { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } | |
| 27 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ 𝑑 ∈ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ) → ( 𝑎 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) | |
| 28 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ 𝑑 ∈ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ) → ( 𝑏 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) | |
| 29 | 21 22 25 25 26 27 28 | offval | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( 𝑎 ∘f ( +g ‘ 𝑅 ) 𝑏 ) = ( 𝑑 ∈ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ↦ ( ( 𝑎 ‘ 𝑑 ) ( +g ‘ 𝑅 ) ( 𝑏 ‘ 𝑑 ) ) ) ) |
| 30 | 21 22 25 25 26 27 28 | offval | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( 𝑎 ∘f ( +g ‘ 𝑆 ) 𝑏 ) = ( 𝑑 ∈ { 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } ↦ ( ( 𝑎 ‘ 𝑑 ) ( +g ‘ 𝑆 ) ( 𝑏 ‘ 𝑑 ) ) ) ) |
| 31 | 20 29 30 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( 𝑎 ∘f ( +g ‘ 𝑅 ) 𝑏 ) = ( 𝑎 ∘f ( +g ‘ 𝑆 ) 𝑏 ) ) |
| 32 | 31 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) , 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ↦ ( 𝑎 ∘f ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) , 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ↦ ( 𝑎 ∘f ( +g ‘ 𝑆 ) 𝑏 ) ) ) |
| 33 | 1 2 | eqtr3d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
| 34 | 33 | psrbaspropd | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
| 35 | mpoeq12 | ⊢ ( ( ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ∧ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) → ( 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) , 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ↦ ( 𝑎 ∘f ( +g ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) , 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ↦ ( 𝑎 ∘f ( +g ‘ 𝑆 ) 𝑏 ) ) ) | |
| 36 | 34 34 35 | syl2anc | ⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) , 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ↦ ( 𝑎 ∘f ( +g ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) , 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ↦ ( 𝑎 ∘f ( +g ‘ 𝑆 ) 𝑏 ) ) ) |
| 37 | 32 36 | eqtrd | ⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) , 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ↦ ( 𝑎 ∘f ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) , 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ↦ ( 𝑎 ∘f ( +g ‘ 𝑆 ) 𝑏 ) ) ) |
| 38 | ofmres | ⊢ ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) × ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) = ( 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) , 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ↦ ( 𝑎 ∘f ( +g ‘ 𝑅 ) 𝑏 ) ) | |
| 39 | ofmres | ⊢ ( ∘f ( +g ‘ 𝑆 ) ↾ ( ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) × ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) ) = ( 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) , 𝑏 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ↦ ( 𝑎 ∘f ( +g ‘ 𝑆 ) 𝑏 ) ) | |
| 40 | 37 38 39 | 3eqtr4g | ⊢ ( 𝜑 → ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) × ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) = ( ∘f ( +g ‘ 𝑆 ) ↾ ( ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) × ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) ) ) |
| 41 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 42 | eqid | ⊢ ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 43 | 5 8 41 42 | psrplusg | ⊢ ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) × ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) |
| 44 | eqid | ⊢ ( 𝐼 mPwSer 𝑆 ) = ( 𝐼 mPwSer 𝑆 ) | |
| 45 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) | |
| 46 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 47 | eqid | ⊢ ( +g ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( +g ‘ ( 𝐼 mPwSer 𝑆 ) ) | |
| 48 | 44 45 46 47 | psrplusg | ⊢ ( +g ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( ∘f ( +g ‘ 𝑆 ) ↾ ( ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) × ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) ) |
| 49 | 40 43 48 | 3eqtr4g | ⊢ ( 𝜑 → ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( +g ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |