This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrplusg.s | |- S = ( I mPwSer R ) |
|
| psrplusg.b | |- B = ( Base ` S ) |
||
| psrplusg.a | |- .+ = ( +g ` R ) |
||
| psrplusg.p | |- .+b = ( +g ` S ) |
||
| Assertion | psrplusg | |- .+b = ( oF .+ |` ( B X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrplusg.s | |- S = ( I mPwSer R ) |
|
| 2 | psrplusg.b | |- B = ( Base ` S ) |
|
| 3 | psrplusg.a | |- .+ = ( +g ` R ) |
|
| 4 | psrplusg.p | |- .+b = ( +g ` S ) |
|
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 7 | eqid | |- ( TopOpen ` R ) = ( TopOpen ` R ) |
|
| 8 | eqid | |- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 9 | simpl | |- ( ( I e. _V /\ R e. _V ) -> I e. _V ) |
|
| 10 | 1 5 8 2 9 | psrbas | |- ( ( I e. _V /\ R e. _V ) -> B = ( ( Base ` R ) ^m { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) ) |
| 11 | eqid | |- ( oF .+ |` ( B X. B ) ) = ( oF .+ |` ( B X. B ) ) |
|
| 12 | eqid | |- ( f e. B , g e. B |-> ( k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( x e. { y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | y oR <_ k } |-> ( ( f ` x ) ( .r ` R ) ( g ` ( k oF - x ) ) ) ) ) ) ) = ( f e. B , g e. B |-> ( k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( x e. { y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | y oR <_ k } |-> ( ( f ` x ) ( .r ` R ) ( g ` ( k oF - x ) ) ) ) ) ) ) |
|
| 13 | eqid | |- ( x e. ( Base ` R ) , f e. B |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) = ( x e. ( Base ` R ) , f e. B |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) |
|
| 14 | eqidd | |- ( ( I e. _V /\ R e. _V ) -> ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) = ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) ) |
|
| 15 | simpr | |- ( ( I e. _V /\ R e. _V ) -> R e. _V ) |
|
| 16 | 1 5 3 6 7 8 10 11 12 13 14 9 15 | psrval | |- ( ( I e. _V /\ R e. _V ) -> S = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( oF .+ |` ( B X. B ) ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( x e. { y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | y oR <_ k } |-> ( ( f ` x ) ( .r ` R ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. B |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) ) |
| 17 | 16 | fveq2d | |- ( ( I e. _V /\ R e. _V ) -> ( +g ` S ) = ( +g ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( oF .+ |` ( B X. B ) ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( x e. { y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | y oR <_ k } |-> ( ( f ` x ) ( .r ` R ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. B |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) ) ) |
| 18 | 2 | fvexi | |- B e. _V |
| 19 | 18 18 | xpex | |- ( B X. B ) e. _V |
| 20 | ofexg | |- ( ( B X. B ) e. _V -> ( oF .+ |` ( B X. B ) ) e. _V ) |
|
| 21 | psrvalstr | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( oF .+ |` ( B X. B ) ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( x e. { y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | y oR <_ k } |-> ( ( f ` x ) ( .r ` R ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. B |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) Struct <. 1 , 9 >. |
|
| 22 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
| 23 | snsstp2 | |- { <. ( +g ` ndx ) , ( oF .+ |` ( B X. B ) ) >. } C_ { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( oF .+ |` ( B X. B ) ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( x e. { y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | y oR <_ k } |-> ( ( f ` x ) ( .r ` R ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } |
|
| 24 | ssun1 | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( oF .+ |` ( B X. B ) ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( x e. { y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | y oR <_ k } |-> ( ( f ` x ) ( .r ` R ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( oF .+ |` ( B X. B ) ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( x e. { y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | y oR <_ k } |-> ( ( f ` x ) ( .r ` R ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. B |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) |
|
| 25 | 23 24 | sstri | |- { <. ( +g ` ndx ) , ( oF .+ |` ( B X. B ) ) >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( oF .+ |` ( B X. B ) ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( x e. { y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | y oR <_ k } |-> ( ( f ` x ) ( .r ` R ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. B |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) |
| 26 | 21 22 25 | strfv | |- ( ( oF .+ |` ( B X. B ) ) e. _V -> ( oF .+ |` ( B X. B ) ) = ( +g ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( oF .+ |` ( B X. B ) ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( x e. { y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | y oR <_ k } |-> ( ( f ` x ) ( .r ` R ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. B |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) ) ) |
| 27 | 19 20 26 | mp2b | |- ( oF .+ |` ( B X. B ) ) = ( +g ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( oF .+ |` ( B X. B ) ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( x e. { y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | y oR <_ k } |-> ( ( f ` x ) ( .r ` R ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. B |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) ) |
| 28 | 17 4 27 | 3eqtr4g | |- ( ( I e. _V /\ R e. _V ) -> .+b = ( oF .+ |` ( B X. B ) ) ) |
| 29 | reldmpsr | |- Rel dom mPwSer |
|
| 30 | 29 | ovprc | |- ( -. ( I e. _V /\ R e. _V ) -> ( I mPwSer R ) = (/) ) |
| 31 | 1 30 | eqtrid | |- ( -. ( I e. _V /\ R e. _V ) -> S = (/) ) |
| 32 | 31 | fveq2d | |- ( -. ( I e. _V /\ R e. _V ) -> ( +g ` S ) = ( +g ` (/) ) ) |
| 33 | 22 | str0 | |- (/) = ( +g ` (/) ) |
| 34 | 32 4 33 | 3eqtr4g | |- ( -. ( I e. _V /\ R e. _V ) -> .+b = (/) ) |
| 35 | 31 | fveq2d | |- ( -. ( I e. _V /\ R e. _V ) -> ( Base ` S ) = ( Base ` (/) ) ) |
| 36 | base0 | |- (/) = ( Base ` (/) ) |
|
| 37 | 35 2 36 | 3eqtr4g | |- ( -. ( I e. _V /\ R e. _V ) -> B = (/) ) |
| 38 | 37 | xpeq2d | |- ( -. ( I e. _V /\ R e. _V ) -> ( B X. B ) = ( B X. (/) ) ) |
| 39 | xp0 | |- ( B X. (/) ) = (/) |
|
| 40 | 38 39 | eqtrdi | |- ( -. ( I e. _V /\ R e. _V ) -> ( B X. B ) = (/) ) |
| 41 | 40 | reseq2d | |- ( -. ( I e. _V /\ R e. _V ) -> ( oF .+ |` ( B X. B ) ) = ( oF .+ |` (/) ) ) |
| 42 | res0 | |- ( oF .+ |` (/) ) = (/) |
|
| 43 | 41 42 | eqtrdi | |- ( -. ( I e. _V /\ R e. _V ) -> ( oF .+ |` ( B X. B ) ) = (/) ) |
| 44 | 34 43 | eqtr4d | |- ( -. ( I e. _V /\ R e. _V ) -> .+b = ( oF .+ |` ( B X. B ) ) ) |
| 45 | 28 44 | pm2.61i | |- .+b = ( oF .+ |` ( B X. B ) ) |