This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oveqrspc2v.1 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x F y ) = ( x G y ) ) |
|
| Assertion | oveqrspc2v | |- ( ( ph /\ ( X e. A /\ Y e. B ) ) -> ( X F Y ) = ( X G Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqrspc2v.1 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x F y ) = ( x G y ) ) |
|
| 2 | 1 | ralrimivva | |- ( ph -> A. x e. A A. y e. B ( x F y ) = ( x G y ) ) |
| 3 | oveq1 | |- ( x = X -> ( x F y ) = ( X F y ) ) |
|
| 4 | oveq1 | |- ( x = X -> ( x G y ) = ( X G y ) ) |
|
| 5 | 3 4 | eqeq12d | |- ( x = X -> ( ( x F y ) = ( x G y ) <-> ( X F y ) = ( X G y ) ) ) |
| 6 | oveq2 | |- ( y = Y -> ( X F y ) = ( X F Y ) ) |
|
| 7 | oveq2 | |- ( y = Y -> ( X G y ) = ( X G Y ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( y = Y -> ( ( X F y ) = ( X G y ) <-> ( X F Y ) = ( X G Y ) ) ) |
| 9 | 5 8 | rspc2v | |- ( ( X e. A /\ Y e. B ) -> ( A. x e. A A. y e. B ( x F y ) = ( x G y ) -> ( X F Y ) = ( X G Y ) ) ) |
| 10 | 2 9 | mpan9 | |- ( ( ph /\ ( X e. A /\ Y e. B ) ) -> ( X F Y ) = ( X G Y ) ) |