This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for a restriction of the function operation map. Unlike oF R which is a proper class, ` ( oF R |`( A X. B ) ) can be a set by ofmresex , allowing it to be used as a function or structure argument. By ofmresval , the restricted operation map values are the same as the original values, allowing theorems for oF R to be reused. (Contributed by NM, 20-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofmres | |- ( oF R |` ( A X. B ) ) = ( f e. A , g e. B |-> ( f oF R g ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv | |- A C_ _V |
|
| 2 | ssv | |- B C_ _V |
|
| 3 | resmpo | |- ( ( A C_ _V /\ B C_ _V ) -> ( ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |` ( A X. B ) ) = ( f e. A , g e. B |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |` ( A X. B ) ) = ( f e. A , g e. B |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |
| 5 | df-of | |- oF R = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |
|
| 6 | 5 | reseq1i | |- ( oF R |` ( A X. B ) ) = ( ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |` ( A X. B ) ) |
| 7 | eqid | |- A = A |
|
| 8 | eqid | |- B = B |
|
| 9 | vex | |- f e. _V |
|
| 10 | vex | |- g e. _V |
|
| 11 | 9 | dmex | |- dom f e. _V |
| 12 | 11 | inex1 | |- ( dom f i^i dom g ) e. _V |
| 13 | 12 | mptex | |- ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) e. _V |
| 14 | 5 | ovmpt4g | |- ( ( f e. _V /\ g e. _V /\ ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) e. _V ) -> ( f oF R g ) = ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |
| 15 | 9 10 13 14 | mp3an | |- ( f oF R g ) = ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) |
| 16 | 7 8 15 | mpoeq123i | |- ( f e. A , g e. B |-> ( f oF R g ) ) = ( f e. A , g e. B |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |
| 17 | 4 6 16 | 3eqtr4i | |- ( oF R |` ( A X. B ) ) = ( f e. A , g e. B |-> ( f oF R g ) ) |