This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 19-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrplusgpropd.b1 | |- ( ph -> B = ( Base ` R ) ) |
|
| psrplusgpropd.b2 | |- ( ph -> B = ( Base ` S ) ) |
||
| psrplusgpropd.p | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
||
| Assertion | mplbaspropd | |- ( ph -> ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrplusgpropd.b1 | |- ( ph -> B = ( Base ` R ) ) |
|
| 2 | psrplusgpropd.b2 | |- ( ph -> B = ( Base ` S ) ) |
|
| 3 | psrplusgpropd.p | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
|
| 4 | 1 2 | eqtr3d | |- ( ph -> ( Base ` R ) = ( Base ` S ) ) |
| 5 | 4 | psrbaspropd | |- ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |
| 6 | 5 | adantr | |- ( ( ph /\ I e. _V ) -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |
| 7 | 1 2 3 | grpidpropd | |- ( ph -> ( 0g ` R ) = ( 0g ` S ) ) |
| 8 | 7 | breq2d | |- ( ph -> ( a finSupp ( 0g ` R ) <-> a finSupp ( 0g ` S ) ) ) |
| 9 | 8 | adantr | |- ( ( ph /\ I e. _V ) -> ( a finSupp ( 0g ` R ) <-> a finSupp ( 0g ` S ) ) ) |
| 10 | 6 9 | rabeqbidv | |- ( ( ph /\ I e. _V ) -> { a e. ( Base ` ( I mPwSer R ) ) | a finSupp ( 0g ` R ) } = { a e. ( Base ` ( I mPwSer S ) ) | a finSupp ( 0g ` S ) } ) |
| 11 | eqid | |- ( I mPoly R ) = ( I mPoly R ) |
|
| 12 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 13 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 14 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 15 | eqid | |- ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) ) |
|
| 16 | 11 12 13 14 15 | mplbas | |- ( Base ` ( I mPoly R ) ) = { a e. ( Base ` ( I mPwSer R ) ) | a finSupp ( 0g ` R ) } |
| 17 | eqid | |- ( I mPoly S ) = ( I mPoly S ) |
|
| 18 | eqid | |- ( I mPwSer S ) = ( I mPwSer S ) |
|
| 19 | eqid | |- ( Base ` ( I mPwSer S ) ) = ( Base ` ( I mPwSer S ) ) |
|
| 20 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 21 | eqid | |- ( Base ` ( I mPoly S ) ) = ( Base ` ( I mPoly S ) ) |
|
| 22 | 17 18 19 20 21 | mplbas | |- ( Base ` ( I mPoly S ) ) = { a e. ( Base ` ( I mPwSer S ) ) | a finSupp ( 0g ` S ) } |
| 23 | 10 16 22 | 3eqtr4g | |- ( ( ph /\ I e. _V ) -> ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly S ) ) ) |
| 24 | reldmmpl | |- Rel dom mPoly |
|
| 25 | 24 | ovprc1 | |- ( -. I e. _V -> ( I mPoly R ) = (/) ) |
| 26 | 24 | ovprc1 | |- ( -. I e. _V -> ( I mPoly S ) = (/) ) |
| 27 | 25 26 | eqtr4d | |- ( -. I e. _V -> ( I mPoly R ) = ( I mPoly S ) ) |
| 28 | 27 | fveq2d | |- ( -. I e. _V -> ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly S ) ) ) |
| 29 | 28 | adantl | |- ( ( ph /\ -. I e. _V ) -> ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly S ) ) ) |
| 30 | 23 29 | pm2.61dan | |- ( ph -> ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly S ) ) ) |