This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indirect strong induction on the upper integers. (Contributed by Stefan O'Rear, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzindi.a | |- ( ph -> A e. V ) |
|
| uzindi.b | |- ( ph -> T e. ( ZZ>= ` L ) ) |
||
| uzindi.c | |- ( ( ph /\ R e. ( L ... T ) /\ A. y ( S e. ( L ..^ R ) -> ch ) ) -> ps ) |
||
| uzindi.d | |- ( x = y -> ( ps <-> ch ) ) |
||
| uzindi.e | |- ( x = A -> ( ps <-> th ) ) |
||
| uzindi.f | |- ( x = y -> R = S ) |
||
| uzindi.g | |- ( x = A -> R = T ) |
||
| Assertion | uzindi | |- ( ph -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzindi.a | |- ( ph -> A e. V ) |
|
| 2 | uzindi.b | |- ( ph -> T e. ( ZZ>= ` L ) ) |
|
| 3 | uzindi.c | |- ( ( ph /\ R e. ( L ... T ) /\ A. y ( S e. ( L ..^ R ) -> ch ) ) -> ps ) |
|
| 4 | uzindi.d | |- ( x = y -> ( ps <-> ch ) ) |
|
| 5 | uzindi.e | |- ( x = A -> ( ps <-> th ) ) |
|
| 6 | uzindi.f | |- ( x = y -> R = S ) |
|
| 7 | uzindi.g | |- ( x = A -> R = T ) |
|
| 8 | eluzfz2 | |- ( T e. ( ZZ>= ` L ) -> T e. ( L ... T ) ) |
|
| 9 | 2 8 | syl | |- ( ph -> T e. ( L ... T ) ) |
| 10 | fzofi | |- ( L ..^ T ) e. Fin |
|
| 11 | finnum | |- ( ( L ..^ T ) e. Fin -> ( L ..^ T ) e. dom card ) |
|
| 12 | 10 11 | mp1i | |- ( ph -> ( L ..^ T ) e. dom card ) |
| 13 | simpll | |- ( ( ( ph /\ A. y ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) ) /\ R e. ( L ... T ) ) -> ph ) |
|
| 14 | simpr | |- ( ( ( ph /\ A. y ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) ) /\ R e. ( L ... T ) ) -> R e. ( L ... T ) ) |
|
| 15 | elfzuz3 | |- ( R e. ( L ... T ) -> T e. ( ZZ>= ` R ) ) |
|
| 16 | 15 | adantl | |- ( ( ph /\ R e. ( L ... T ) ) -> T e. ( ZZ>= ` R ) ) |
| 17 | fzoss2 | |- ( T e. ( ZZ>= ` R ) -> ( L ..^ R ) C_ ( L ..^ T ) ) |
|
| 18 | fzossfz | |- ( L ..^ T ) C_ ( L ... T ) |
|
| 19 | 17 18 | sstrdi | |- ( T e. ( ZZ>= ` R ) -> ( L ..^ R ) C_ ( L ... T ) ) |
| 20 | 16 19 | syl | |- ( ( ph /\ R e. ( L ... T ) ) -> ( L ..^ R ) C_ ( L ... T ) ) |
| 21 | 20 | sselda | |- ( ( ( ph /\ R e. ( L ... T ) ) /\ S e. ( L ..^ R ) ) -> S e. ( L ... T ) ) |
| 22 | fzofi | |- ( L ..^ R ) e. Fin |
|
| 23 | elfzofz | |- ( S e. ( L ..^ R ) -> S e. ( L ... R ) ) |
|
| 24 | 23 | adantl | |- ( ( ( ph /\ R e. ( L ... T ) ) /\ S e. ( L ..^ R ) ) -> S e. ( L ... R ) ) |
| 25 | elfzuz3 | |- ( S e. ( L ... R ) -> R e. ( ZZ>= ` S ) ) |
|
| 26 | fzoss2 | |- ( R e. ( ZZ>= ` S ) -> ( L ..^ S ) C_ ( L ..^ R ) ) |
|
| 27 | 24 25 26 | 3syl | |- ( ( ( ph /\ R e. ( L ... T ) ) /\ S e. ( L ..^ R ) ) -> ( L ..^ S ) C_ ( L ..^ R ) ) |
| 28 | fzonel | |- -. S e. ( L ..^ S ) |
|
| 29 | 28 | jctr | |- ( S e. ( L ..^ R ) -> ( S e. ( L ..^ R ) /\ -. S e. ( L ..^ S ) ) ) |
| 30 | 29 | adantl | |- ( ( ( ph /\ R e. ( L ... T ) ) /\ S e. ( L ..^ R ) ) -> ( S e. ( L ..^ R ) /\ -. S e. ( L ..^ S ) ) ) |
| 31 | ssnelpss | |- ( ( L ..^ S ) C_ ( L ..^ R ) -> ( ( S e. ( L ..^ R ) /\ -. S e. ( L ..^ S ) ) -> ( L ..^ S ) C. ( L ..^ R ) ) ) |
|
| 32 | 27 30 31 | sylc | |- ( ( ( ph /\ R e. ( L ... T ) ) /\ S e. ( L ..^ R ) ) -> ( L ..^ S ) C. ( L ..^ R ) ) |
| 33 | php3 | |- ( ( ( L ..^ R ) e. Fin /\ ( L ..^ S ) C. ( L ..^ R ) ) -> ( L ..^ S ) ~< ( L ..^ R ) ) |
|
| 34 | 22 32 33 | sylancr | |- ( ( ( ph /\ R e. ( L ... T ) ) /\ S e. ( L ..^ R ) ) -> ( L ..^ S ) ~< ( L ..^ R ) ) |
| 35 | id | |- ( ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) -> ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) ) |
|
| 36 | 35 | com13 | |- ( S e. ( L ... T ) -> ( ( L ..^ S ) ~< ( L ..^ R ) -> ( ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) -> ch ) ) ) |
| 37 | 21 34 36 | sylc | |- ( ( ( ph /\ R e. ( L ... T ) ) /\ S e. ( L ..^ R ) ) -> ( ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) -> ch ) ) |
| 38 | 37 | ex | |- ( ( ph /\ R e. ( L ... T ) ) -> ( S e. ( L ..^ R ) -> ( ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) -> ch ) ) ) |
| 39 | 38 | com23 | |- ( ( ph /\ R e. ( L ... T ) ) -> ( ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) -> ( S e. ( L ..^ R ) -> ch ) ) ) |
| 40 | 39 | alimdv | |- ( ( ph /\ R e. ( L ... T ) ) -> ( A. y ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) -> A. y ( S e. ( L ..^ R ) -> ch ) ) ) |
| 41 | 40 | ex | |- ( ph -> ( R e. ( L ... T ) -> ( A. y ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) -> A. y ( S e. ( L ..^ R ) -> ch ) ) ) ) |
| 42 | 41 | com23 | |- ( ph -> ( A. y ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) -> ( R e. ( L ... T ) -> A. y ( S e. ( L ..^ R ) -> ch ) ) ) ) |
| 43 | 42 | imp31 | |- ( ( ( ph /\ A. y ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) ) /\ R e. ( L ... T ) ) -> A. y ( S e. ( L ..^ R ) -> ch ) ) |
| 44 | 13 14 43 3 | syl3anc | |- ( ( ( ph /\ A. y ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) ) /\ R e. ( L ... T ) ) -> ps ) |
| 45 | 44 | ex | |- ( ( ph /\ A. y ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) ) -> ( R e. ( L ... T ) -> ps ) ) |
| 46 | 45 | 3adant2 | |- ( ( ph /\ ( L ..^ R ) ~<_ ( L ..^ T ) /\ A. y ( ( L ..^ S ) ~< ( L ..^ R ) -> ( S e. ( L ... T ) -> ch ) ) ) -> ( R e. ( L ... T ) -> ps ) ) |
| 47 | 6 | eleq1d | |- ( x = y -> ( R e. ( L ... T ) <-> S e. ( L ... T ) ) ) |
| 48 | 47 4 | imbi12d | |- ( x = y -> ( ( R e. ( L ... T ) -> ps ) <-> ( S e. ( L ... T ) -> ch ) ) ) |
| 49 | 7 | eleq1d | |- ( x = A -> ( R e. ( L ... T ) <-> T e. ( L ... T ) ) ) |
| 50 | 49 5 | imbi12d | |- ( x = A -> ( ( R e. ( L ... T ) -> ps ) <-> ( T e. ( L ... T ) -> th ) ) ) |
| 51 | 6 | oveq2d | |- ( x = y -> ( L ..^ R ) = ( L ..^ S ) ) |
| 52 | 7 | oveq2d | |- ( x = A -> ( L ..^ R ) = ( L ..^ T ) ) |
| 53 | 1 12 46 48 50 51 52 | indcardi | |- ( ph -> ( T e. ( L ... T ) -> th ) ) |
| 54 | 9 53 | mpd | |- ( ph -> th ) |