This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1expaddsub | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( -u 1 ^ ( X - Y ) ) = ( -u 1 ^ ( X + Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m1expcl | |- ( X e. ZZ -> ( -u 1 ^ X ) e. ZZ ) |
|
| 2 | 1 | zcnd | |- ( X e. ZZ -> ( -u 1 ^ X ) e. CC ) |
| 3 | 2 | adantr | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( -u 1 ^ X ) e. CC ) |
| 4 | m1expcl | |- ( Y e. ZZ -> ( -u 1 ^ Y ) e. ZZ ) |
|
| 5 | 4 | zcnd | |- ( Y e. ZZ -> ( -u 1 ^ Y ) e. CC ) |
| 6 | 5 | adantl | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( -u 1 ^ Y ) e. CC ) |
| 7 | neg1cn | |- -u 1 e. CC |
|
| 8 | neg1ne0 | |- -u 1 =/= 0 |
|
| 9 | expne0i | |- ( ( -u 1 e. CC /\ -u 1 =/= 0 /\ Y e. ZZ ) -> ( -u 1 ^ Y ) =/= 0 ) |
|
| 10 | 7 8 9 | mp3an12 | |- ( Y e. ZZ -> ( -u 1 ^ Y ) =/= 0 ) |
| 11 | 10 | adantl | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( -u 1 ^ Y ) =/= 0 ) |
| 12 | 3 6 11 | divrecd | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( ( -u 1 ^ X ) / ( -u 1 ^ Y ) ) = ( ( -u 1 ^ X ) x. ( 1 / ( -u 1 ^ Y ) ) ) ) |
| 13 | m1expcl2 | |- ( Y e. ZZ -> ( -u 1 ^ Y ) e. { -u 1 , 1 } ) |
|
| 14 | elpri | |- ( ( -u 1 ^ Y ) e. { -u 1 , 1 } -> ( ( -u 1 ^ Y ) = -u 1 \/ ( -u 1 ^ Y ) = 1 ) ) |
|
| 15 | ax-1cn | |- 1 e. CC |
|
| 16 | ax-1ne0 | |- 1 =/= 0 |
|
| 17 | divneg2 | |- ( ( 1 e. CC /\ 1 e. CC /\ 1 =/= 0 ) -> -u ( 1 / 1 ) = ( 1 / -u 1 ) ) |
|
| 18 | 15 15 16 17 | mp3an | |- -u ( 1 / 1 ) = ( 1 / -u 1 ) |
| 19 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 20 | 19 | negeqi | |- -u ( 1 / 1 ) = -u 1 |
| 21 | 18 20 | eqtr3i | |- ( 1 / -u 1 ) = -u 1 |
| 22 | oveq2 | |- ( ( -u 1 ^ Y ) = -u 1 -> ( 1 / ( -u 1 ^ Y ) ) = ( 1 / -u 1 ) ) |
|
| 23 | id | |- ( ( -u 1 ^ Y ) = -u 1 -> ( -u 1 ^ Y ) = -u 1 ) |
|
| 24 | 21 22 23 | 3eqtr4a | |- ( ( -u 1 ^ Y ) = -u 1 -> ( 1 / ( -u 1 ^ Y ) ) = ( -u 1 ^ Y ) ) |
| 25 | oveq2 | |- ( ( -u 1 ^ Y ) = 1 -> ( 1 / ( -u 1 ^ Y ) ) = ( 1 / 1 ) ) |
|
| 26 | id | |- ( ( -u 1 ^ Y ) = 1 -> ( -u 1 ^ Y ) = 1 ) |
|
| 27 | 19 25 26 | 3eqtr4a | |- ( ( -u 1 ^ Y ) = 1 -> ( 1 / ( -u 1 ^ Y ) ) = ( -u 1 ^ Y ) ) |
| 28 | 24 27 | jaoi | |- ( ( ( -u 1 ^ Y ) = -u 1 \/ ( -u 1 ^ Y ) = 1 ) -> ( 1 / ( -u 1 ^ Y ) ) = ( -u 1 ^ Y ) ) |
| 29 | 13 14 28 | 3syl | |- ( Y e. ZZ -> ( 1 / ( -u 1 ^ Y ) ) = ( -u 1 ^ Y ) ) |
| 30 | 29 | adantl | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( 1 / ( -u 1 ^ Y ) ) = ( -u 1 ^ Y ) ) |
| 31 | 30 | oveq2d | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( ( -u 1 ^ X ) x. ( 1 / ( -u 1 ^ Y ) ) ) = ( ( -u 1 ^ X ) x. ( -u 1 ^ Y ) ) ) |
| 32 | 12 31 | eqtrd | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( ( -u 1 ^ X ) / ( -u 1 ^ Y ) ) = ( ( -u 1 ^ X ) x. ( -u 1 ^ Y ) ) ) |
| 33 | expsub | |- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( -u 1 ^ ( X - Y ) ) = ( ( -u 1 ^ X ) / ( -u 1 ^ Y ) ) ) |
|
| 34 | 7 8 33 | mpanl12 | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( -u 1 ^ ( X - Y ) ) = ( ( -u 1 ^ X ) / ( -u 1 ^ Y ) ) ) |
| 35 | expaddz | |- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( -u 1 ^ ( X + Y ) ) = ( ( -u 1 ^ X ) x. ( -u 1 ^ Y ) ) ) |
|
| 36 | 7 8 35 | mpanl12 | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( -u 1 ^ ( X + Y ) ) = ( ( -u 1 ^ X ) x. ( -u 1 ^ Y ) ) ) |
| 37 | 32 34 36 | 3eqtr4d | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( -u 1 ^ ( X - Y ) ) = ( -u 1 ^ ( X + Y ) ) ) |