This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function definition of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfval.g | |- G = ( SymGrp ` D ) |
|
| psgnfval.b | |- B = ( Base ` G ) |
||
| psgnfval.f | |- F = { p e. B | dom ( p \ _I ) e. Fin } |
||
| psgnfval.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnfval.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgnfval | |- N = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfval.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnfval.b | |- B = ( Base ` G ) |
|
| 3 | psgnfval.f | |- F = { p e. B | dom ( p \ _I ) e. Fin } |
|
| 4 | psgnfval.t | |- T = ran ( pmTrsp ` D ) |
|
| 5 | psgnfval.n | |- N = ( pmSgn ` D ) |
|
| 6 | fveq2 | |- ( d = D -> ( SymGrp ` d ) = ( SymGrp ` D ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( d = D -> ( SymGrp ` d ) = G ) |
| 8 | 7 | fveq2d | |- ( d = D -> ( Base ` ( SymGrp ` d ) ) = ( Base ` G ) ) |
| 9 | 8 2 | eqtr4di | |- ( d = D -> ( Base ` ( SymGrp ` d ) ) = B ) |
| 10 | rabeq | |- ( ( Base ` ( SymGrp ` d ) ) = B -> { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } = { p e. B | dom ( p \ _I ) e. Fin } ) |
|
| 11 | 9 10 | syl | |- ( d = D -> { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } = { p e. B | dom ( p \ _I ) e. Fin } ) |
| 12 | 11 3 | eqtr4di | |- ( d = D -> { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } = F ) |
| 13 | fveq2 | |- ( d = D -> ( pmTrsp ` d ) = ( pmTrsp ` D ) ) |
|
| 14 | 13 | rneqd | |- ( d = D -> ran ( pmTrsp ` d ) = ran ( pmTrsp ` D ) ) |
| 15 | 14 4 | eqtr4di | |- ( d = D -> ran ( pmTrsp ` d ) = T ) |
| 16 | wrdeq | |- ( ran ( pmTrsp ` d ) = T -> Word ran ( pmTrsp ` d ) = Word T ) |
|
| 17 | 15 16 | syl | |- ( d = D -> Word ran ( pmTrsp ` d ) = Word T ) |
| 18 | 7 | oveq1d | |- ( d = D -> ( ( SymGrp ` d ) gsum w ) = ( G gsum w ) ) |
| 19 | 18 | eqeq2d | |- ( d = D -> ( x = ( ( SymGrp ` d ) gsum w ) <-> x = ( G gsum w ) ) ) |
| 20 | 19 | anbi1d | |- ( d = D -> ( ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 21 | 17 20 | rexeqbidv | |- ( d = D -> ( E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 22 | 21 | iotabidv | |- ( d = D -> ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) = ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 23 | 12 22 | mpteq12dv | |- ( d = D -> ( x e. { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
| 24 | df-psgn | |- pmSgn = ( d e. _V |-> ( x e. { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
|
| 25 | 2 | fvexi | |- B e. _V |
| 26 | 3 25 | rabex2 | |- F e. _V |
| 27 | 26 | mptex | |- ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) e. _V |
| 28 | 23 24 27 | fvmpt | |- ( D e. _V -> ( pmSgn ` D ) = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
| 29 | fvprc | |- ( -. D e. _V -> ( pmSgn ` D ) = (/) ) |
|
| 30 | fvprc | |- ( -. D e. _V -> ( SymGrp ` D ) = (/) ) |
|
| 31 | 1 30 | eqtrid | |- ( -. D e. _V -> G = (/) ) |
| 32 | 31 | fveq2d | |- ( -. D e. _V -> ( Base ` G ) = ( Base ` (/) ) ) |
| 33 | base0 | |- (/) = ( Base ` (/) ) |
|
| 34 | 32 33 | eqtr4di | |- ( -. D e. _V -> ( Base ` G ) = (/) ) |
| 35 | 2 34 | eqtrid | |- ( -. D e. _V -> B = (/) ) |
| 36 | rabeq | |- ( B = (/) -> { p e. B | dom ( p \ _I ) e. Fin } = { p e. (/) | dom ( p \ _I ) e. Fin } ) |
|
| 37 | 35 36 | syl | |- ( -. D e. _V -> { p e. B | dom ( p \ _I ) e. Fin } = { p e. (/) | dom ( p \ _I ) e. Fin } ) |
| 38 | rab0 | |- { p e. (/) | dom ( p \ _I ) e. Fin } = (/) |
|
| 39 | 37 38 | eqtrdi | |- ( -. D e. _V -> { p e. B | dom ( p \ _I ) e. Fin } = (/) ) |
| 40 | 3 39 | eqtrid | |- ( -. D e. _V -> F = (/) ) |
| 41 | 40 | mpteq1d | |- ( -. D e. _V -> ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = ( x e. (/) |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
| 42 | mpt0 | |- ( x e. (/) |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = (/) |
|
| 43 | 41 42 | eqtrdi | |- ( -. D e. _V -> ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = (/) ) |
| 44 | 29 43 | eqtr4d | |- ( -. D e. _V -> ( pmSgn ` D ) = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
| 45 | 28 44 | pm2.61i | |- ( pmSgn ` D ) = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 46 | 5 45 | eqtri | |- N = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |