This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnprfval.0 | |- D = { 1 , 2 } |
|
| psgnprfval.g | |- G = ( SymGrp ` D ) |
||
| psgnprfval.b | |- B = ( Base ` G ) |
||
| psgnprfval.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnprfval.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgnprfval | |- ( X e. B -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnprfval.0 | |- D = { 1 , 2 } |
|
| 2 | psgnprfval.g | |- G = ( SymGrp ` D ) |
|
| 3 | psgnprfval.b | |- B = ( Base ` G ) |
|
| 4 | psgnprfval.t | |- T = ran ( pmTrsp ` D ) |
|
| 5 | psgnprfval.n | |- N = ( pmSgn ` D ) |
|
| 6 | id | |- ( X e. B -> X e. B ) |
|
| 7 | elpri | |- ( X e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } -> ( X = { <. 1 , 1 >. , <. 2 , 2 >. } \/ X = { <. 1 , 2 >. , <. 2 , 1 >. } ) ) |
|
| 8 | prfi | |- { <. 1 , 1 >. , <. 2 , 2 >. } e. Fin |
|
| 9 | eleq1 | |- ( X = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( X e. Fin <-> { <. 1 , 1 >. , <. 2 , 2 >. } e. Fin ) ) |
|
| 10 | 8 9 | mpbiri | |- ( X = { <. 1 , 1 >. , <. 2 , 2 >. } -> X e. Fin ) |
| 11 | prfi | |- { <. 1 , 2 >. , <. 2 , 1 >. } e. Fin |
|
| 12 | eleq1 | |- ( X = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( X e. Fin <-> { <. 1 , 2 >. , <. 2 , 1 >. } e. Fin ) ) |
|
| 13 | 11 12 | mpbiri | |- ( X = { <. 1 , 2 >. , <. 2 , 1 >. } -> X e. Fin ) |
| 14 | 10 13 | jaoi | |- ( ( X = { <. 1 , 1 >. , <. 2 , 2 >. } \/ X = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> X e. Fin ) |
| 15 | diffi | |- ( X e. Fin -> ( X \ _I ) e. Fin ) |
|
| 16 | dmfi | |- ( ( X \ _I ) e. Fin -> dom ( X \ _I ) e. Fin ) |
|
| 17 | 7 14 15 16 | 4syl | |- ( X e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } -> dom ( X \ _I ) e. Fin ) |
| 18 | 1ex | |- 1 e. _V |
|
| 19 | 2nn | |- 2 e. NN |
|
| 20 | 2 3 1 | symg2bas | |- ( ( 1 e. _V /\ 2 e. NN ) -> B = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } ) |
| 21 | 18 19 20 | mp2an | |- B = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } |
| 22 | 17 21 | eleq2s | |- ( X e. B -> dom ( X \ _I ) e. Fin ) |
| 23 | 2 5 3 | psgneldm | |- ( X e. dom N <-> ( X e. B /\ dom ( X \ _I ) e. Fin ) ) |
| 24 | 6 22 23 | sylanbrc | |- ( X e. B -> X e. dom N ) |
| 25 | 2 4 5 | psgnval | |- ( X e. dom N -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 26 | 24 25 | syl | |- ( X e. B -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 27 | 6 26 | syl | |- ( X e. B -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |