This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015) (Revised by AV, 10-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expghm.m | |- M = ( mulGrp ` CCfld ) |
|
| expghm.u | |- U = ( M |`s ( CC \ { 0 } ) ) |
||
| Assertion | expghm | |- ( ( A e. CC /\ A =/= 0 ) -> ( x e. ZZ |-> ( A ^ x ) ) e. ( ZZring GrpHom U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expghm.m | |- M = ( mulGrp ` CCfld ) |
|
| 2 | expghm.u | |- U = ( M |`s ( CC \ { 0 } ) ) |
|
| 3 | expclzlem | |- ( ( A e. CC /\ A =/= 0 /\ x e. ZZ ) -> ( A ^ x ) e. ( CC \ { 0 } ) ) |
|
| 4 | 3 | 3expa | |- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ZZ ) -> ( A ^ x ) e. ( CC \ { 0 } ) ) |
| 5 | 4 | fmpttd | |- ( ( A e. CC /\ A =/= 0 ) -> ( x e. ZZ |-> ( A ^ x ) ) : ZZ --> ( CC \ { 0 } ) ) |
| 6 | expaddz | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( A ^ ( y + z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
|
| 7 | zaddcl | |- ( ( y e. ZZ /\ z e. ZZ ) -> ( y + z ) e. ZZ ) |
|
| 8 | 7 | adantl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( y + z ) e. ZZ ) |
| 9 | oveq2 | |- ( x = ( y + z ) -> ( A ^ x ) = ( A ^ ( y + z ) ) ) |
|
| 10 | eqid | |- ( x e. ZZ |-> ( A ^ x ) ) = ( x e. ZZ |-> ( A ^ x ) ) |
|
| 11 | ovex | |- ( A ^ ( y + z ) ) e. _V |
|
| 12 | 9 10 11 | fvmpt | |- ( ( y + z ) e. ZZ -> ( ( x e. ZZ |-> ( A ^ x ) ) ` ( y + z ) ) = ( A ^ ( y + z ) ) ) |
| 13 | 8 12 | syl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( x e. ZZ |-> ( A ^ x ) ) ` ( y + z ) ) = ( A ^ ( y + z ) ) ) |
| 14 | oveq2 | |- ( x = y -> ( A ^ x ) = ( A ^ y ) ) |
|
| 15 | ovex | |- ( A ^ y ) e. _V |
|
| 16 | 14 10 15 | fvmpt | |- ( y e. ZZ -> ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) = ( A ^ y ) ) |
| 17 | oveq2 | |- ( x = z -> ( A ^ x ) = ( A ^ z ) ) |
|
| 18 | ovex | |- ( A ^ z ) e. _V |
|
| 19 | 17 10 18 | fvmpt | |- ( z e. ZZ -> ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) = ( A ^ z ) ) |
| 20 | 16 19 | oveqan12d | |- ( ( y e. ZZ /\ z e. ZZ ) -> ( ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) x. ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
| 21 | 20 | adantl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) x. ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
| 22 | 6 13 21 | 3eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( x e. ZZ |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) x. ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) ) ) |
| 23 | 22 | ralrimivva | |- ( ( A e. CC /\ A =/= 0 ) -> A. y e. ZZ A. z e. ZZ ( ( x e. ZZ |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) x. ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) ) ) |
| 24 | zringgrp | |- ZZring e. Grp |
|
| 25 | cnring | |- CCfld e. Ring |
|
| 26 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 27 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 28 | cndrng | |- CCfld e. DivRing |
|
| 29 | 26 27 28 | drngui | |- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 30 | 1 | oveq1i | |- ( M |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
| 31 | 2 30 | eqtri | |- U = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
| 32 | 29 31 | unitgrp | |- ( CCfld e. Ring -> U e. Grp ) |
| 33 | 25 32 | ax-mp | |- U e. Grp |
| 34 | 24 33 | pm3.2i | |- ( ZZring e. Grp /\ U e. Grp ) |
| 35 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 36 | difss | |- ( CC \ { 0 } ) C_ CC |
|
| 37 | 1 26 | mgpbas | |- CC = ( Base ` M ) |
| 38 | 2 37 | ressbas2 | |- ( ( CC \ { 0 } ) C_ CC -> ( CC \ { 0 } ) = ( Base ` U ) ) |
| 39 | 36 38 | ax-mp | |- ( CC \ { 0 } ) = ( Base ` U ) |
| 40 | zringplusg | |- + = ( +g ` ZZring ) |
|
| 41 | 29 | fvexi | |- ( CC \ { 0 } ) e. _V |
| 42 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 43 | 1 42 | mgpplusg | |- x. = ( +g ` M ) |
| 44 | 2 43 | ressplusg | |- ( ( CC \ { 0 } ) e. _V -> x. = ( +g ` U ) ) |
| 45 | 41 44 | ax-mp | |- x. = ( +g ` U ) |
| 46 | 35 39 40 45 | isghm | |- ( ( x e. ZZ |-> ( A ^ x ) ) e. ( ZZring GrpHom U ) <-> ( ( ZZring e. Grp /\ U e. Grp ) /\ ( ( x e. ZZ |-> ( A ^ x ) ) : ZZ --> ( CC \ { 0 } ) /\ A. y e. ZZ A. z e. ZZ ( ( x e. ZZ |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) x. ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) ) ) ) ) |
| 47 | 34 46 | mpbiran | |- ( ( x e. ZZ |-> ( A ^ x ) ) e. ( ZZring GrpHom U ) <-> ( ( x e. ZZ |-> ( A ^ x ) ) : ZZ --> ( CC \ { 0 } ) /\ A. y e. ZZ A. z e. ZZ ( ( x e. ZZ |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) x. ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) ) ) ) |
| 48 | 5 23 47 | sylanbrc | |- ( ( A e. CC /\ A =/= 0 ) -> ( x e. ZZ |-> ( A ^ x ) ) e. ( ZZring GrpHom U ) ) |