This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irredn0.i | |- I = ( Irred ` R ) |
|
| irredn0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | irredn0 | |- ( ( R e. Ring /\ X e. I ) -> X =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredn0.i | |- I = ( Irred ` R ) |
|
| 2 | irredn0.z | |- .0. = ( 0g ` R ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 3 2 | ring0cl | |- ( R e. Ring -> .0. e. ( Base ` R ) ) |
| 5 | 4 | anim1i | |- ( ( R e. Ring /\ -. .0. e. ( Unit ` R ) ) -> ( .0. e. ( Base ` R ) /\ -. .0. e. ( Unit ` R ) ) ) |
| 6 | eldif | |- ( .0. e. ( ( Base ` R ) \ ( Unit ` R ) ) <-> ( .0. e. ( Base ` R ) /\ -. .0. e. ( Unit ` R ) ) ) |
|
| 7 | 5 6 | sylibr | |- ( ( R e. Ring /\ -. .0. e. ( Unit ` R ) ) -> .0. e. ( ( Base ` R ) \ ( Unit ` R ) ) ) |
| 8 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 9 | 3 8 2 | ringlz | |- ( ( R e. Ring /\ .0. e. ( Base ` R ) ) -> ( .0. ( .r ` R ) .0. ) = .0. ) |
| 10 | 4 9 | mpdan | |- ( R e. Ring -> ( .0. ( .r ` R ) .0. ) = .0. ) |
| 11 | 10 | adantr | |- ( ( R e. Ring /\ -. .0. e. ( Unit ` R ) ) -> ( .0. ( .r ` R ) .0. ) = .0. ) |
| 12 | oveq1 | |- ( x = .0. -> ( x ( .r ` R ) y ) = ( .0. ( .r ` R ) y ) ) |
|
| 13 | 12 | eqeq1d | |- ( x = .0. -> ( ( x ( .r ` R ) y ) = .0. <-> ( .0. ( .r ` R ) y ) = .0. ) ) |
| 14 | oveq2 | |- ( y = .0. -> ( .0. ( .r ` R ) y ) = ( .0. ( .r ` R ) .0. ) ) |
|
| 15 | 14 | eqeq1d | |- ( y = .0. -> ( ( .0. ( .r ` R ) y ) = .0. <-> ( .0. ( .r ` R ) .0. ) = .0. ) ) |
| 16 | 13 15 | rspc2ev | |- ( ( .0. e. ( ( Base ` R ) \ ( Unit ` R ) ) /\ .0. e. ( ( Base ` R ) \ ( Unit ` R ) ) /\ ( .0. ( .r ` R ) .0. ) = .0. ) -> E. x e. ( ( Base ` R ) \ ( Unit ` R ) ) E. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) = .0. ) |
| 17 | 7 7 11 16 | syl3anc | |- ( ( R e. Ring /\ -. .0. e. ( Unit ` R ) ) -> E. x e. ( ( Base ` R ) \ ( Unit ` R ) ) E. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) = .0. ) |
| 18 | 17 | ex | |- ( R e. Ring -> ( -. .0. e. ( Unit ` R ) -> E. x e. ( ( Base ` R ) \ ( Unit ` R ) ) E. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) = .0. ) ) |
| 19 | 18 | orrd | |- ( R e. Ring -> ( .0. e. ( Unit ` R ) \/ E. x e. ( ( Base ` R ) \ ( Unit ` R ) ) E. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) = .0. ) ) |
| 20 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 21 | eqid | |- ( ( Base ` R ) \ ( Unit ` R ) ) = ( ( Base ` R ) \ ( Unit ` R ) ) |
|
| 22 | 3 20 1 21 8 | isnirred | |- ( .0. e. ( Base ` R ) -> ( -. .0. e. I <-> ( .0. e. ( Unit ` R ) \/ E. x e. ( ( Base ` R ) \ ( Unit ` R ) ) E. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) = .0. ) ) ) |
| 23 | 4 22 | syl | |- ( R e. Ring -> ( -. .0. e. I <-> ( .0. e. ( Unit ` R ) \/ E. x e. ( ( Base ` R ) \ ( Unit ` R ) ) E. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) = .0. ) ) ) |
| 24 | 19 23 | mpbird | |- ( R e. Ring -> -. .0. e. I ) |
| 25 | 24 | adantr | |- ( ( R e. Ring /\ X e. I ) -> -. .0. e. I ) |
| 26 | simpr | |- ( ( R e. Ring /\ X e. I ) -> X e. I ) |
|
| 27 | eleq1 | |- ( X = .0. -> ( X e. I <-> .0. e. I ) ) |
|
| 28 | 26 27 | syl5ibcom | |- ( ( R e. Ring /\ X e. I ) -> ( X = .0. -> .0. e. I ) ) |
| 29 | 28 | necon3bd | |- ( ( R e. Ring /\ X e. I ) -> ( -. .0. e. I -> X =/= .0. ) ) |
| 30 | 25 29 | mpd | |- ( ( R e. Ring /\ X e. I ) -> X =/= .0. ) |