This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element is irreducible iff its negative is. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irredn0.i | |- I = ( Irred ` R ) |
|
| irredneg.n | |- N = ( invg ` R ) |
||
| irrednegb.b | |- B = ( Base ` R ) |
||
| Assertion | irrednegb | |- ( ( R e. Ring /\ X e. B ) -> ( X e. I <-> ( N ` X ) e. I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredn0.i | |- I = ( Irred ` R ) |
|
| 2 | irredneg.n | |- N = ( invg ` R ) |
|
| 3 | irrednegb.b | |- B = ( Base ` R ) |
|
| 4 | 1 2 | irredneg | |- ( ( R e. Ring /\ X e. I ) -> ( N ` X ) e. I ) |
| 5 | 4 | adantlr | |- ( ( ( R e. Ring /\ X e. B ) /\ X e. I ) -> ( N ` X ) e. I ) |
| 6 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 7 | 3 2 | grpinvinv | |- ( ( R e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |
| 8 | 6 7 | sylan | |- ( ( R e. Ring /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |
| 9 | 8 | adantr | |- ( ( ( R e. Ring /\ X e. B ) /\ ( N ` X ) e. I ) -> ( N ` ( N ` X ) ) = X ) |
| 10 | 1 2 | irredneg | |- ( ( R e. Ring /\ ( N ` X ) e. I ) -> ( N ` ( N ` X ) ) e. I ) |
| 11 | 10 | adantlr | |- ( ( ( R e. Ring /\ X e. B ) /\ ( N ` X ) e. I ) -> ( N ` ( N ` X ) ) e. I ) |
| 12 | 9 11 | eqeltrrd | |- ( ( ( R e. Ring /\ X e. B ) /\ ( N ` X ) e. I ) -> X e. I ) |
| 13 | 5 12 | impbida | |- ( ( R e. Ring /\ X e. B ) -> ( X e. I <-> ( N ` X ) e. I ) ) |