This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show an explicit expression for the modular inverse of A mod P . (Contributed by Mario Carneiro, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prmdiv.1 | |- R = ( ( A ^ ( P - 2 ) ) mod P ) |
|
| Assertion | prmdiv | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R e. ( 1 ... ( P - 1 ) ) /\ P || ( ( A x. R ) - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmdiv.1 | |- R = ( ( A ^ ( P - 2 ) ) mod P ) |
|
| 2 | nprmdvds1 | |- ( P e. Prime -> -. P || 1 ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> -. P || 1 ) |
| 4 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. ZZ ) |
| 6 | simp2 | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> A e. ZZ ) |
|
| 7 | phiprm | |- ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( phi ` P ) = ( P - 1 ) ) |
| 9 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 10 | 9 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. NN ) |
| 11 | nnm1nn0 | |- ( P e. NN -> ( P - 1 ) e. NN0 ) |
|
| 12 | 10 11 | syl | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 1 ) e. NN0 ) |
| 13 | 8 12 | eqeltrd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( phi ` P ) e. NN0 ) |
| 14 | zexpcl | |- ( ( A e. ZZ /\ ( phi ` P ) e. NN0 ) -> ( A ^ ( phi ` P ) ) e. ZZ ) |
|
| 15 | 6 13 14 | syl2anc | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( phi ` P ) ) e. ZZ ) |
| 16 | 1z | |- 1 e. ZZ |
|
| 17 | zsubcl | |- ( ( ( A ^ ( phi ` P ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( A ^ ( phi ` P ) ) - 1 ) e. ZZ ) |
|
| 18 | 15 16 17 | sylancl | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) - 1 ) e. ZZ ) |
| 19 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 20 | 19 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. ( ZZ>= ` 2 ) ) |
| 21 | uznn0sub | |- ( P e. ( ZZ>= ` 2 ) -> ( P - 2 ) e. NN0 ) |
|
| 22 | 20 21 | syl | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 2 ) e. NN0 ) |
| 23 | zexpcl | |- ( ( A e. ZZ /\ ( P - 2 ) e. NN0 ) -> ( A ^ ( P - 2 ) ) e. ZZ ) |
|
| 24 | 6 22 23 | syl2anc | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 2 ) ) e. ZZ ) |
| 25 | 24 | zred | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 2 ) ) e. RR ) |
| 26 | 25 10 | nndivred | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 2 ) ) / P ) e. RR ) |
| 27 | 26 | flcld | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) e. ZZ ) |
| 28 | 6 27 | zmulcld | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) e. ZZ ) |
| 29 | 5 28 | zmulcld | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) e. ZZ ) |
| 30 | 6 5 | gcdcomd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A gcd P ) = ( P gcd A ) ) |
| 31 | coprm | |- ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A <-> ( P gcd A ) = 1 ) ) |
|
| 32 | 31 | biimp3a | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P gcd A ) = 1 ) |
| 33 | 30 32 | eqtrd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A gcd P ) = 1 ) |
| 34 | eulerth | |- ( ( P e. NN /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) |
|
| 35 | 10 6 33 34 | syl3anc | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) |
| 36 | 1zzd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> 1 e. ZZ ) |
|
| 37 | moddvds | |- ( ( P e. NN /\ ( A ^ ( phi ` P ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) <-> P || ( ( A ^ ( phi ` P ) ) - 1 ) ) ) |
|
| 38 | 10 15 36 37 | syl3anc | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) <-> P || ( ( A ^ ( phi ` P ) ) - 1 ) ) ) |
| 39 | 35 38 | mpbid | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P || ( ( A ^ ( phi ` P ) ) - 1 ) ) |
| 40 | dvdsmul1 | |- ( ( P e. ZZ /\ ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) e. ZZ ) -> P || ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) |
|
| 41 | 5 28 40 | syl2anc | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P || ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) |
| 42 | 5 18 29 39 41 | dvds2subd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P || ( ( ( A ^ ( phi ` P ) ) - 1 ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 43 | 6 | zcnd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> A e. CC ) |
| 44 | 24 | zcnd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 2 ) ) e. CC ) |
| 45 | 5 27 | zmulcld | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) e. ZZ ) |
| 46 | 45 | zcnd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) e. CC ) |
| 47 | 43 44 46 | subdid | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) = ( ( A x. ( A ^ ( P - 2 ) ) ) - ( A x. ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 48 | 10 | nnrpd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. RR+ ) |
| 49 | modval | |- ( ( ( A ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) -> ( ( A ^ ( P - 2 ) ) mod P ) = ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) |
|
| 50 | 25 48 49 | syl2anc | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 2 ) ) mod P ) = ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) |
| 51 | 1 50 | eqtrid | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> R = ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) |
| 52 | 51 | oveq2d | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. R ) = ( A x. ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 53 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 54 | 53 | oveq2i | |- ( P - ( 2 - 1 ) ) = ( P - 1 ) |
| 55 | 8 54 | eqtr4di | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( phi ` P ) = ( P - ( 2 - 1 ) ) ) |
| 56 | 10 | nncnd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. CC ) |
| 57 | 2cnd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> 2 e. CC ) |
|
| 58 | 1cnd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> 1 e. CC ) |
|
| 59 | 56 57 58 | subsubd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - ( 2 - 1 ) ) = ( ( P - 2 ) + 1 ) ) |
| 60 | 55 59 | eqtrd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( phi ` P ) = ( ( P - 2 ) + 1 ) ) |
| 61 | 60 | oveq2d | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( phi ` P ) ) = ( A ^ ( ( P - 2 ) + 1 ) ) ) |
| 62 | 43 22 | expp1d | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( ( P - 2 ) + 1 ) ) = ( ( A ^ ( P - 2 ) ) x. A ) ) |
| 63 | 44 43 | mulcomd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 2 ) ) x. A ) = ( A x. ( A ^ ( P - 2 ) ) ) ) |
| 64 | 61 62 63 | 3eqtrd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( phi ` P ) ) = ( A x. ( A ^ ( P - 2 ) ) ) ) |
| 65 | 27 | zcnd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) e. CC ) |
| 66 | 56 43 65 | mul12d | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) = ( A x. ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) |
| 67 | 64 66 | oveq12d | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) = ( ( A x. ( A ^ ( P - 2 ) ) ) - ( A x. ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 68 | 47 52 67 | 3eqtr4d | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. R ) = ( ( A ^ ( phi ` P ) ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 69 | 68 | oveq1d | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A x. R ) - 1 ) = ( ( ( A ^ ( phi ` P ) ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) - 1 ) ) |
| 70 | 15 | zcnd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( phi ` P ) ) e. CC ) |
| 71 | 29 | zcnd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) e. CC ) |
| 72 | 70 71 58 | sub32d | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( ( A ^ ( phi ` P ) ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) - 1 ) = ( ( ( A ^ ( phi ` P ) ) - 1 ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 73 | 69 72 | eqtrd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A x. R ) - 1 ) = ( ( ( A ^ ( phi ` P ) ) - 1 ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 74 | 42 73 | breqtrrd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P || ( ( A x. R ) - 1 ) ) |
| 75 | oveq2 | |- ( R = 0 -> ( A x. R ) = ( A x. 0 ) ) |
|
| 76 | 75 | oveq1d | |- ( R = 0 -> ( ( A x. R ) - 1 ) = ( ( A x. 0 ) - 1 ) ) |
| 77 | 76 | breq2d | |- ( R = 0 -> ( P || ( ( A x. R ) - 1 ) <-> P || ( ( A x. 0 ) - 1 ) ) ) |
| 78 | 74 77 | syl5ibcom | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R = 0 -> P || ( ( A x. 0 ) - 1 ) ) ) |
| 79 | 43 | mul01d | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. 0 ) = 0 ) |
| 80 | 79 | oveq1d | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A x. 0 ) - 1 ) = ( 0 - 1 ) ) |
| 81 | df-neg | |- -u 1 = ( 0 - 1 ) |
|
| 82 | 80 81 | eqtr4di | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A x. 0 ) - 1 ) = -u 1 ) |
| 83 | 82 | breq2d | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P || ( ( A x. 0 ) - 1 ) <-> P || -u 1 ) ) |
| 84 | dvdsnegb | |- ( ( P e. ZZ /\ 1 e. ZZ ) -> ( P || 1 <-> P || -u 1 ) ) |
|
| 85 | 5 16 84 | sylancl | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P || 1 <-> P || -u 1 ) ) |
| 86 | 83 85 | bitr4d | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P || ( ( A x. 0 ) - 1 ) <-> P || 1 ) ) |
| 87 | 78 86 | sylibd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R = 0 -> P || 1 ) ) |
| 88 | 3 87 | mtod | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> -. R = 0 ) |
| 89 | zmodfz | |- ( ( ( A ^ ( P - 2 ) ) e. ZZ /\ P e. NN ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. ( 0 ... ( P - 1 ) ) ) |
|
| 90 | 24 10 89 | syl2anc | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. ( 0 ... ( P - 1 ) ) ) |
| 91 | 1 90 | eqeltrid | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> R e. ( 0 ... ( P - 1 ) ) ) |
| 92 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 93 | 12 92 | eleqtrdi | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 1 ) e. ( ZZ>= ` 0 ) ) |
| 94 | elfzp12 | |- ( ( P - 1 ) e. ( ZZ>= ` 0 ) -> ( R e. ( 0 ... ( P - 1 ) ) <-> ( R = 0 \/ R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) ) ) |
|
| 95 | 93 94 | syl | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R e. ( 0 ... ( P - 1 ) ) <-> ( R = 0 \/ R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) ) ) |
| 96 | 91 95 | mpbid | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R = 0 \/ R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) ) |
| 97 | 96 | ord | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( -. R = 0 -> R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) ) |
| 98 | 88 97 | mpd | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) |
| 99 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 100 | 99 | oveq1i | |- ( 1 ... ( P - 1 ) ) = ( ( 0 + 1 ) ... ( P - 1 ) ) |
| 101 | 98 100 | eleqtrrdi | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> R e. ( 1 ... ( P - 1 ) ) ) |
| 102 | 101 74 | jca | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R e. ( 1 ... ( P - 1 ) ) /\ P || ( ( A x. R ) - 1 ) ) ) |