This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bounds and closure for the value of the Euler phi function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phicl2 | |- ( N e. NN -> ( phi ` N ) e. ( 1 ... N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phival | |- ( N e. NN -> ( phi ` N ) = ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
|
| 2 | fzfi | |- ( 1 ... N ) e. Fin |
|
| 3 | ssrab2 | |- { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... N ) |
|
| 4 | ssfi | |- ( ( ( 1 ... N ) e. Fin /\ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... N ) ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin ) |
|
| 5 | 2 3 4 | mp2an | |- { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin |
| 6 | hashcl | |- ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin -> ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. NN0 ) |
|
| 7 | 5 6 | ax-mp | |- ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. NN0 |
| 8 | 7 | nn0zi | |- ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ZZ |
| 9 | 8 | a1i | |- ( N e. NN -> ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ZZ ) |
| 10 | 1z | |- 1 e. ZZ |
|
| 11 | hashsng | |- ( 1 e. ZZ -> ( # ` { 1 } ) = 1 ) |
|
| 12 | 10 11 | ax-mp | |- ( # ` { 1 } ) = 1 |
| 13 | ovex | |- ( 1 ... N ) e. _V |
|
| 14 | 13 | rabex | |- { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. _V |
| 15 | oveq1 | |- ( x = 1 -> ( x gcd N ) = ( 1 gcd N ) ) |
|
| 16 | 15 | eqeq1d | |- ( x = 1 -> ( ( x gcd N ) = 1 <-> ( 1 gcd N ) = 1 ) ) |
| 17 | eluzfz1 | |- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
|
| 18 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 19 | 17 18 | eleq2s | |- ( N e. NN -> 1 e. ( 1 ... N ) ) |
| 20 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 21 | 1gcd | |- ( N e. ZZ -> ( 1 gcd N ) = 1 ) |
|
| 22 | 20 21 | syl | |- ( N e. NN -> ( 1 gcd N ) = 1 ) |
| 23 | 16 19 22 | elrabd | |- ( N e. NN -> 1 e. { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) |
| 24 | 23 | snssd | |- ( N e. NN -> { 1 } C_ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) |
| 25 | ssdomg | |- ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. _V -> ( { 1 } C_ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } -> { 1 } ~<_ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
|
| 26 | 14 24 25 | mpsyl | |- ( N e. NN -> { 1 } ~<_ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) |
| 27 | snfi | |- { 1 } e. Fin |
|
| 28 | hashdom | |- ( ( { 1 } e. Fin /\ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin ) -> ( ( # ` { 1 } ) <_ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <-> { 1 } ~<_ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
|
| 29 | 27 5 28 | mp2an | |- ( ( # ` { 1 } ) <_ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <-> { 1 } ~<_ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) |
| 30 | 26 29 | sylibr | |- ( N e. NN -> ( # ` { 1 } ) <_ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
| 31 | 12 30 | eqbrtrrid | |- ( N e. NN -> 1 <_ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
| 32 | ssdomg | |- ( ( 1 ... N ) e. _V -> ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... N ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... N ) ) ) |
|
| 33 | 13 3 32 | mp2 | |- { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... N ) |
| 34 | hashdom | |- ( ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... N ) ) <-> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... N ) ) ) |
|
| 35 | 5 2 34 | mp2an | |- ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... N ) ) <-> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... N ) ) |
| 36 | 33 35 | mpbir | |- ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... N ) ) |
| 37 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 38 | hashfz1 | |- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
|
| 39 | 37 38 | syl | |- ( N e. NN -> ( # ` ( 1 ... N ) ) = N ) |
| 40 | 36 39 | breqtrid | |- ( N e. NN -> ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ N ) |
| 41 | elfz1 | |- ( ( 1 e. ZZ /\ N e. ZZ ) -> ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ( 1 ... N ) <-> ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ZZ /\ 1 <_ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) /\ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ N ) ) ) |
|
| 42 | 10 20 41 | sylancr | |- ( N e. NN -> ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ( 1 ... N ) <-> ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ZZ /\ 1 <_ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) /\ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ N ) ) ) |
| 43 | 9 31 40 42 | mpbir3and | |- ( N e. NN -> ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ( 1 ... N ) ) |
| 44 | 1 43 | eqeltrd | |- ( N e. NN -> ( phi ` N ) e. ( 1 ... N ) ) |