This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pclem.1 | |- A = { n e. NN0 | ( P ^ n ) || N } |
|
| pclem.2 | |- S = sup ( A , RR , < ) |
||
| Assertion | pcpre1 | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> S = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclem.1 | |- A = { n e. NN0 | ( P ^ n ) || N } |
|
| 2 | pclem.2 | |- S = sup ( A , RR , < ) |
|
| 3 | 1z | |- 1 e. ZZ |
|
| 4 | eleq1 | |- ( N = 1 -> ( N e. ZZ <-> 1 e. ZZ ) ) |
|
| 5 | 3 4 | mpbiri | |- ( N = 1 -> N e. ZZ ) |
| 6 | ax-1ne0 | |- 1 =/= 0 |
|
| 7 | neeq1 | |- ( N = 1 -> ( N =/= 0 <-> 1 =/= 0 ) ) |
|
| 8 | 6 7 | mpbiri | |- ( N = 1 -> N =/= 0 ) |
| 9 | 5 8 | jca | |- ( N = 1 -> ( N e. ZZ /\ N =/= 0 ) ) |
| 10 | 1 2 | pcprecl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
| 11 | 9 10 | sylan2 | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
| 12 | 11 | simprd | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ S ) || N ) |
| 13 | simpr | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> N = 1 ) |
|
| 14 | 12 13 | breqtrd | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ S ) || 1 ) |
| 15 | eluz2nn | |- ( P e. ( ZZ>= ` 2 ) -> P e. NN ) |
|
| 16 | 15 | adantr | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> P e. NN ) |
| 17 | 11 | simpld | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> S e. NN0 ) |
| 18 | 16 17 | nnexpcld | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ S ) e. NN ) |
| 19 | 18 | nnzd | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ S ) e. ZZ ) |
| 20 | 1nn | |- 1 e. NN |
|
| 21 | dvdsle | |- ( ( ( P ^ S ) e. ZZ /\ 1 e. NN ) -> ( ( P ^ S ) || 1 -> ( P ^ S ) <_ 1 ) ) |
|
| 22 | 19 20 21 | sylancl | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( ( P ^ S ) || 1 -> ( P ^ S ) <_ 1 ) ) |
| 23 | 14 22 | mpd | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ S ) <_ 1 ) |
| 24 | 16 | nncnd | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> P e. CC ) |
| 25 | 24 | exp0d | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ 0 ) = 1 ) |
| 26 | 23 25 | breqtrrd | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ S ) <_ ( P ^ 0 ) ) |
| 27 | 16 | nnred | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> P e. RR ) |
| 28 | 17 | nn0zd | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> S e. ZZ ) |
| 29 | 0zd | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> 0 e. ZZ ) |
|
| 30 | eluz2gt1 | |- ( P e. ( ZZ>= ` 2 ) -> 1 < P ) |
|
| 31 | 30 | adantr | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> 1 < P ) |
| 32 | 27 28 29 31 | leexp2d | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( S <_ 0 <-> ( P ^ S ) <_ ( P ^ 0 ) ) ) |
| 33 | 26 32 | mpbird | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> S <_ 0 ) |
| 34 | 10 | simpld | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> S e. NN0 ) |
| 35 | 9 34 | sylan2 | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> S e. NN0 ) |
| 36 | nn0le0eq0 | |- ( S e. NN0 -> ( S <_ 0 <-> S = 0 ) ) |
|
| 37 | 35 36 | syl | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( S <_ 0 <-> S = 0 ) ) |
| 38 | 33 37 | mpbid | |- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> S = 0 ) |