This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unique element such that ph . (Contributed by Jeff Madsen, 1-Jun-2011) (Revised by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iota2.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| Assertion | iota2 | |- ( ( A e. B /\ E! x ph ) -> ( ps <-> ( iota x ph ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | elex | |- ( A e. B -> A e. _V ) |
|
| 3 | simpl | |- ( ( A e. _V /\ E! x ph ) -> A e. _V ) |
|
| 4 | simpr | |- ( ( A e. _V /\ E! x ph ) -> E! x ph ) |
|
| 5 | 1 | adantl | |- ( ( ( A e. _V /\ E! x ph ) /\ x = A ) -> ( ph <-> ps ) ) |
| 6 | nfv | |- F/ x A e. _V |
|
| 7 | nfeu1 | |- F/ x E! x ph |
|
| 8 | 6 7 | nfan | |- F/ x ( A e. _V /\ E! x ph ) |
| 9 | nfvd | |- ( ( A e. _V /\ E! x ph ) -> F/ x ps ) |
|
| 10 | nfcvd | |- ( ( A e. _V /\ E! x ph ) -> F/_ x A ) |
|
| 11 | 3 4 5 8 9 10 | iota2df | |- ( ( A e. _V /\ E! x ph ) -> ( ps <-> ( iota x ph ) = A ) ) |
| 12 | 2 11 | sylan | |- ( ( A e. B /\ E! x ph ) -> ( ps <-> ( iota x ph ) = A ) ) |