This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcexp | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ N e. ZZ ) -> ( P pCnt ( A ^ N ) ) = ( N x. ( P pCnt A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = 0 -> ( A ^ x ) = ( A ^ 0 ) ) |
|
| 2 | 1 | oveq2d | |- ( x = 0 -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ 0 ) ) ) |
| 3 | oveq1 | |- ( x = 0 -> ( x x. ( P pCnt A ) ) = ( 0 x. ( P pCnt A ) ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( x = 0 -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ 0 ) ) = ( 0 x. ( P pCnt A ) ) ) ) |
| 5 | oveq2 | |- ( x = y -> ( A ^ x ) = ( A ^ y ) ) |
|
| 6 | 5 | oveq2d | |- ( x = y -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ y ) ) ) |
| 7 | oveq1 | |- ( x = y -> ( x x. ( P pCnt A ) ) = ( y x. ( P pCnt A ) ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( x = y -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) ) ) |
| 9 | oveq2 | |- ( x = ( y + 1 ) -> ( A ^ x ) = ( A ^ ( y + 1 ) ) ) |
|
| 10 | 9 | oveq2d | |- ( x = ( y + 1 ) -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ ( y + 1 ) ) ) ) |
| 11 | oveq1 | |- ( x = ( y + 1 ) -> ( x x. ( P pCnt A ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) ) |
|
| 12 | 10 11 | eqeq12d | |- ( x = ( y + 1 ) -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) ) ) |
| 13 | oveq2 | |- ( x = -u y -> ( A ^ x ) = ( A ^ -u y ) ) |
|
| 14 | 13 | oveq2d | |- ( x = -u y -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ -u y ) ) ) |
| 15 | oveq1 | |- ( x = -u y -> ( x x. ( P pCnt A ) ) = ( -u y x. ( P pCnt A ) ) ) |
|
| 16 | 14 15 | eqeq12d | |- ( x = -u y -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ -u y ) ) = ( -u y x. ( P pCnt A ) ) ) ) |
| 17 | oveq2 | |- ( x = N -> ( A ^ x ) = ( A ^ N ) ) |
|
| 18 | 17 | oveq2d | |- ( x = N -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ N ) ) ) |
| 19 | oveq1 | |- ( x = N -> ( x x. ( P pCnt A ) ) = ( N x. ( P pCnt A ) ) ) |
|
| 20 | 18 19 | eqeq12d | |- ( x = N -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ N ) ) = ( N x. ( P pCnt A ) ) ) ) |
| 21 | pc1 | |- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |
|
| 22 | 21 | adantr | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt 1 ) = 0 ) |
| 23 | qcn | |- ( A e. QQ -> A e. CC ) |
|
| 24 | 23 | ad2antrl | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> A e. CC ) |
| 25 | 24 | exp0d | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( A ^ 0 ) = 1 ) |
| 26 | 25 | oveq2d | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( A ^ 0 ) ) = ( P pCnt 1 ) ) |
| 27 | pcqcl | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt A ) e. ZZ ) |
|
| 28 | 27 | zcnd | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt A ) e. CC ) |
| 29 | 28 | mul02d | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( 0 x. ( P pCnt A ) ) = 0 ) |
| 30 | 22 26 29 | 3eqtr4d | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( A ^ 0 ) ) = ( 0 x. ( P pCnt A ) ) ) |
| 31 | oveq1 | |- ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) = ( ( y x. ( P pCnt A ) ) + ( P pCnt A ) ) ) |
|
| 32 | expp1 | |- ( ( A e. CC /\ y e. NN0 ) -> ( A ^ ( y + 1 ) ) = ( ( A ^ y ) x. A ) ) |
|
| 33 | 24 32 | sylan | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( A ^ ( y + 1 ) ) = ( ( A ^ y ) x. A ) ) |
| 34 | 33 | oveq2d | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( P pCnt ( ( A ^ y ) x. A ) ) ) |
| 35 | simpll | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> P e. Prime ) |
|
| 36 | simplrl | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> A e. QQ ) |
|
| 37 | simplrr | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> A =/= 0 ) |
|
| 38 | nn0z | |- ( y e. NN0 -> y e. ZZ ) |
|
| 39 | 38 | adantl | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> y e. ZZ ) |
| 40 | qexpclz | |- ( ( A e. QQ /\ A =/= 0 /\ y e. ZZ ) -> ( A ^ y ) e. QQ ) |
|
| 41 | 36 37 39 40 | syl3anc | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( A ^ y ) e. QQ ) |
| 42 | 24 | adantr | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> A e. CC ) |
| 43 | 42 37 39 | expne0d | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( A ^ y ) =/= 0 ) |
| 44 | pcqmul | |- ( ( P e. Prime /\ ( ( A ^ y ) e. QQ /\ ( A ^ y ) =/= 0 ) /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( ( A ^ y ) x. A ) ) = ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) ) |
|
| 45 | 35 41 43 36 37 44 | syl122anc | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( P pCnt ( ( A ^ y ) x. A ) ) = ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) ) |
| 46 | 34 45 | eqtrd | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) ) |
| 47 | nn0cn | |- ( y e. NN0 -> y e. CC ) |
|
| 48 | 47 | adantl | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> y e. CC ) |
| 49 | 28 | adantr | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( P pCnt A ) e. CC ) |
| 50 | 48 49 | adddirp1d | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( ( y + 1 ) x. ( P pCnt A ) ) = ( ( y x. ( P pCnt A ) ) + ( P pCnt A ) ) ) |
| 51 | 46 50 | eqeq12d | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) <-> ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) = ( ( y x. ( P pCnt A ) ) + ( P pCnt A ) ) ) ) |
| 52 | 31 51 | imbitrrid | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) ) ) |
| 53 | 52 | ex | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( y e. NN0 -> ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) ) ) ) |
| 54 | negeq | |- ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> -u ( P pCnt ( A ^ y ) ) = -u ( y x. ( P pCnt A ) ) ) |
|
| 55 | nnnn0 | |- ( y e. NN -> y e. NN0 ) |
|
| 56 | expneg | |- ( ( A e. CC /\ y e. NN0 ) -> ( A ^ -u y ) = ( 1 / ( A ^ y ) ) ) |
|
| 57 | 24 55 56 | syl2an | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( A ^ -u y ) = ( 1 / ( A ^ y ) ) ) |
| 58 | 57 | oveq2d | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( P pCnt ( A ^ -u y ) ) = ( P pCnt ( 1 / ( A ^ y ) ) ) ) |
| 59 | simpll | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> P e. Prime ) |
|
| 60 | 55 41 | sylan2 | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( A ^ y ) e. QQ ) |
| 61 | 55 43 | sylan2 | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( A ^ y ) =/= 0 ) |
| 62 | pcrec | |- ( ( P e. Prime /\ ( ( A ^ y ) e. QQ /\ ( A ^ y ) =/= 0 ) ) -> ( P pCnt ( 1 / ( A ^ y ) ) ) = -u ( P pCnt ( A ^ y ) ) ) |
|
| 63 | 59 60 61 62 | syl12anc | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( P pCnt ( 1 / ( A ^ y ) ) ) = -u ( P pCnt ( A ^ y ) ) ) |
| 64 | 58 63 | eqtrd | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( P pCnt ( A ^ -u y ) ) = -u ( P pCnt ( A ^ y ) ) ) |
| 65 | nncn | |- ( y e. NN -> y e. CC ) |
|
| 66 | mulneg1 | |- ( ( y e. CC /\ ( P pCnt A ) e. CC ) -> ( -u y x. ( P pCnt A ) ) = -u ( y x. ( P pCnt A ) ) ) |
|
| 67 | 65 28 66 | syl2anr | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( -u y x. ( P pCnt A ) ) = -u ( y x. ( P pCnt A ) ) ) |
| 68 | 64 67 | eqeq12d | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( ( P pCnt ( A ^ -u y ) ) = ( -u y x. ( P pCnt A ) ) <-> -u ( P pCnt ( A ^ y ) ) = -u ( y x. ( P pCnt A ) ) ) ) |
| 69 | 54 68 | imbitrrid | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( P pCnt ( A ^ -u y ) ) = ( -u y x. ( P pCnt A ) ) ) ) |
| 70 | 69 | ex | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( y e. NN -> ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( P pCnt ( A ^ -u y ) ) = ( -u y x. ( P pCnt A ) ) ) ) ) |
| 71 | 4 8 12 16 20 30 53 70 | zindd | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( N e. ZZ -> ( P pCnt ( A ^ N ) ) = ( N x. ( P pCnt A ) ) ) ) |
| 72 | 71 | 3impia | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ N e. ZZ ) -> ( P pCnt ( A ^ N ) ) = ( N x. ( P pCnt A ) ) ) |