This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prime power of a reciprocal. (Contributed by Mario Carneiro, 10-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcrec | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( 1 / A ) ) = -u ( P pCnt A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | |- 1 e. ZZ |
|
| 2 | zq | |- ( 1 e. ZZ -> 1 e. QQ ) |
|
| 3 | 1 2 | ax-mp | |- 1 e. QQ |
| 4 | ax-1ne0 | |- 1 =/= 0 |
|
| 5 | 3 4 | pm3.2i | |- ( 1 e. QQ /\ 1 =/= 0 ) |
| 6 | pcqdiv | |- ( ( P e. Prime /\ ( 1 e. QQ /\ 1 =/= 0 ) /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( 1 / A ) ) = ( ( P pCnt 1 ) - ( P pCnt A ) ) ) |
|
| 7 | 5 6 | mp3an2 | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( 1 / A ) ) = ( ( P pCnt 1 ) - ( P pCnt A ) ) ) |
| 8 | pc1 | |- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |
|
| 9 | 8 | adantr | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt 1 ) = 0 ) |
| 10 | 9 | oveq1d | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( ( P pCnt 1 ) - ( P pCnt A ) ) = ( 0 - ( P pCnt A ) ) ) |
| 11 | 7 10 | eqtrd | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( 1 / A ) ) = ( 0 - ( P pCnt A ) ) ) |
| 12 | df-neg | |- -u ( P pCnt A ) = ( 0 - ( P pCnt A ) ) |
|
| 13 | 11 12 | eqtr4di | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( 1 / A ) ) = -u ( P pCnt A ) ) |