This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended nonnegative integer closure of the general prime count function. (Contributed by Jim Kingdon, 13-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcxnn0cl | |- ( ( P e. Prime /\ N e. ZZ ) -> ( P pCnt N ) e. NN0* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pc0 | |- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
|
| 2 | pnf0xnn0 | |- +oo e. NN0* |
|
| 3 | 1 2 | eqeltrdi | |- ( P e. Prime -> ( P pCnt 0 ) e. NN0* ) |
| 4 | 3 | adantr | |- ( ( P e. Prime /\ N e. ZZ ) -> ( P pCnt 0 ) e. NN0* ) |
| 5 | oveq2 | |- ( N = 0 -> ( P pCnt N ) = ( P pCnt 0 ) ) |
|
| 6 | 5 | eleq1d | |- ( N = 0 -> ( ( P pCnt N ) e. NN0* <-> ( P pCnt 0 ) e. NN0* ) ) |
| 7 | 4 6 | syl5ibrcom | |- ( ( P e. Prime /\ N e. ZZ ) -> ( N = 0 -> ( P pCnt N ) e. NN0* ) ) |
| 8 | pczcl | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) e. NN0 ) |
|
| 9 | 8 | nn0xnn0d | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) e. NN0* ) |
| 10 | 9 | expr | |- ( ( P e. Prime /\ N e. ZZ ) -> ( N =/= 0 -> ( P pCnt N ) e. NN0* ) ) |
| 11 | 7 10 | pm2.61dne | |- ( ( P e. Prime /\ N e. ZZ ) -> ( P pCnt N ) e. NN0* ) |