This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a complex number raised to a nonpositive integer power. When A = 0 and N is nonzero, both sides have the "value" ( 1 / 0 ) ; relying on that should be avoid in applications. (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expneg | |- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 3 | 2 | adantl | |- ( ( A e. CC /\ N e. NN ) -> N =/= 0 ) |
| 4 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 5 | 4 | adantl | |- ( ( A e. CC /\ N e. NN ) -> N e. CC ) |
| 6 | 5 | negeq0d | |- ( ( A e. CC /\ N e. NN ) -> ( N = 0 <-> -u N = 0 ) ) |
| 7 | 6 | necon3abid | |- ( ( A e. CC /\ N e. NN ) -> ( N =/= 0 <-> -. -u N = 0 ) ) |
| 8 | 3 7 | mpbid | |- ( ( A e. CC /\ N e. NN ) -> -. -u N = 0 ) |
| 9 | 8 | iffalsed | |- ( ( A e. CC /\ N e. NN ) -> if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) = if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) |
| 10 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 11 | 10 | adantl | |- ( ( A e. CC /\ N e. NN ) -> N e. NN0 ) |
| 12 | nn0nlt0 | |- ( N e. NN0 -> -. N < 0 ) |
|
| 13 | 11 12 | syl | |- ( ( A e. CC /\ N e. NN ) -> -. N < 0 ) |
| 14 | 11 | nn0red | |- ( ( A e. CC /\ N e. NN ) -> N e. RR ) |
| 15 | 14 | lt0neg1d | |- ( ( A e. CC /\ N e. NN ) -> ( N < 0 <-> 0 < -u N ) ) |
| 16 | 13 15 | mtbid | |- ( ( A e. CC /\ N e. NN ) -> -. 0 < -u N ) |
| 17 | 16 | iffalsed | |- ( ( A e. CC /\ N e. NN ) -> if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) |
| 18 | 5 | negnegd | |- ( ( A e. CC /\ N e. NN ) -> -u -u N = N ) |
| 19 | 18 | fveq2d | |- ( ( A e. CC /\ N e. NN ) -> ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
| 20 | 19 | oveq2d | |- ( ( A e. CC /\ N e. NN ) -> ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) ) |
| 21 | 9 17 20 | 3eqtrd | |- ( ( A e. CC /\ N e. NN ) -> if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) ) |
| 22 | nnnegz | |- ( N e. NN -> -u N e. ZZ ) |
|
| 23 | expval | |- ( ( A e. CC /\ -u N e. ZZ ) -> ( A ^ -u N ) = if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) ) |
|
| 24 | 22 23 | sylan2 | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ -u N ) = if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) ) |
| 25 | expnnval | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
|
| 26 | 25 | oveq2d | |- ( ( A e. CC /\ N e. NN ) -> ( 1 / ( A ^ N ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) ) |
| 27 | 21 24 26 | 3eqtr4d | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
| 28 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 29 | 28 | eqcomi | |- 1 = ( 1 / 1 ) |
| 30 | negeq | |- ( N = 0 -> -u N = -u 0 ) |
|
| 31 | neg0 | |- -u 0 = 0 |
|
| 32 | 30 31 | eqtrdi | |- ( N = 0 -> -u N = 0 ) |
| 33 | 32 | oveq2d | |- ( N = 0 -> ( A ^ -u N ) = ( A ^ 0 ) ) |
| 34 | exp0 | |- ( A e. CC -> ( A ^ 0 ) = 1 ) |
|
| 35 | 33 34 | sylan9eqr | |- ( ( A e. CC /\ N = 0 ) -> ( A ^ -u N ) = 1 ) |
| 36 | oveq2 | |- ( N = 0 -> ( A ^ N ) = ( A ^ 0 ) ) |
|
| 37 | 36 34 | sylan9eqr | |- ( ( A e. CC /\ N = 0 ) -> ( A ^ N ) = 1 ) |
| 38 | 37 | oveq2d | |- ( ( A e. CC /\ N = 0 ) -> ( 1 / ( A ^ N ) ) = ( 1 / 1 ) ) |
| 39 | 29 35 38 | 3eqtr4a | |- ( ( A e. CC /\ N = 0 ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
| 40 | 27 39 | jaodan | |- ( ( A e. CC /\ ( N e. NN \/ N = 0 ) ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
| 41 | 1 40 | sylan2b | |- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |