This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a nonempty set of reals is real iff it is not plus infinity. (Contributed by NM, 5-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrre2 | |- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) e. RR <-> sup ( A , RR* , < ) =/= +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supxrre1 | |- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) e. RR <-> sup ( A , RR* , < ) < +oo ) ) |
|
| 2 | ressxr | |- RR C_ RR* |
|
| 3 | sstr | |- ( ( A C_ RR /\ RR C_ RR* ) -> A C_ RR* ) |
|
| 4 | 2 3 | mpan2 | |- ( A C_ RR -> A C_ RR* ) |
| 5 | supxrcl | |- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
|
| 6 | nltpnft | |- ( sup ( A , RR* , < ) e. RR* -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
|
| 7 | 4 5 6 | 3syl | |- ( A C_ RR -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
| 8 | 7 | necon2abid | |- ( A C_ RR -> ( sup ( A , RR* , < ) < +oo <-> sup ( A , RR* , < ) =/= +oo ) ) |
| 9 | 8 | adantr | |- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) < +oo <-> sup ( A , RR* , < ) =/= +oo ) ) |
| 10 | 1 9 | bitrd | |- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) e. RR <-> sup ( A , RR* , < ) =/= +oo ) ) |