This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace sum operation in the opposite group. (Contributed by Mario Carneiro, 19-Apr-2016) (Proof shortened by AV, 2-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppglsm.o | |- O = ( oppG ` G ) |
|
| oppglsm.p | |- .(+) = ( LSSum ` G ) |
||
| Assertion | oppglsm | |- ( T ( LSSum ` O ) U ) = ( U .(+) T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppglsm.o | |- O = ( oppG ` G ) |
|
| 2 | oppglsm.p | |- .(+) = ( LSSum ` G ) |
|
| 3 | 1 | fvexi | |- O e. _V |
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 1 4 | oppgbas | |- ( Base ` G ) = ( Base ` O ) |
| 6 | eqid | |- ( +g ` O ) = ( +g ` O ) |
|
| 7 | eqid | |- ( LSSum ` O ) = ( LSSum ` O ) |
|
| 8 | 5 6 7 | lsmfval | |- ( O e. _V -> ( LSSum ` O ) = ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) ) ) |
| 9 | 3 8 | ax-mp | |- ( LSSum ` O ) = ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) ) |
| 10 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 11 | 4 10 2 | lsmfval | |- ( G e. _V -> .(+) = ( u e. ~P ( Base ` G ) , t e. ~P ( Base ` G ) |-> ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) ) ) |
| 12 | 11 | tposeqd | |- ( G e. _V -> tpos .(+) = tpos ( u e. ~P ( Base ` G ) , t e. ~P ( Base ` G ) |-> ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) ) ) |
| 13 | eqid | |- ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) = ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) |
|
| 14 | 13 | reldmmpo | |- Rel dom ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) |
| 15 | 13 | mpofun | |- Fun ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) |
| 16 | funforn | |- ( Fun ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) <-> ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) : dom ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) -onto-> ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) ) |
|
| 17 | 15 16 | mpbi | |- ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) : dom ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) -onto-> ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) |
| 18 | tposfo2 | |- ( Rel dom ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) -> ( ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) : dom ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) -onto-> ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) -> tpos ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) : `' dom ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) -onto-> ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) ) ) |
|
| 19 | 14 17 18 | mp2 | |- tpos ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) : `' dom ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) -onto-> ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) |
| 20 | forn | |- ( tpos ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) : `' dom ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) -onto-> ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) -> ran tpos ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) = ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) ) |
|
| 21 | 19 20 | ax-mp | |- ran tpos ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) = ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) |
| 22 | 10 1 6 | oppgplus | |- ( x ( +g ` O ) y ) = ( y ( +g ` G ) x ) |
| 23 | 22 | eqcomi | |- ( y ( +g ` G ) x ) = ( x ( +g ` O ) y ) |
| 24 | 23 | a1i | |- ( ( y e. u /\ x e. t ) -> ( y ( +g ` G ) x ) = ( x ( +g ` O ) y ) ) |
| 25 | 24 | mpoeq3ia | |- ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) = ( y e. u , x e. t |-> ( x ( +g ` O ) y ) ) |
| 26 | 25 | tposmpo | |- tpos ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) = ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) |
| 27 | 26 | rneqi | |- ran tpos ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) = ran ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) |
| 28 | 21 27 | eqtr3i | |- ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) = ran ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) |
| 29 | 28 | a1i | |- ( ( u e. ~P ( Base ` G ) /\ t e. ~P ( Base ` G ) ) -> ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) = ran ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) ) |
| 30 | 29 | mpoeq3ia | |- ( u e. ~P ( Base ` G ) , t e. ~P ( Base ` G ) |-> ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) ) = ( u e. ~P ( Base ` G ) , t e. ~P ( Base ` G ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) ) |
| 31 | 30 | tposmpo | |- tpos ( u e. ~P ( Base ` G ) , t e. ~P ( Base ` G ) |-> ran ( y e. u , x e. t |-> ( y ( +g ` G ) x ) ) ) = ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) ) |
| 32 | 12 31 | eqtrdi | |- ( G e. _V -> tpos .(+) = ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) ) ) |
| 33 | 9 32 | eqtr4id | |- ( G e. _V -> ( LSSum ` O ) = tpos .(+) ) |
| 34 | 33 | oveqd | |- ( G e. _V -> ( T ( LSSum ` O ) U ) = ( T tpos .(+) U ) ) |
| 35 | ovtpos | |- ( T tpos .(+) U ) = ( U .(+) T ) |
|
| 36 | 34 35 | eqtrdi | |- ( G e. _V -> ( T ( LSSum ` O ) U ) = ( U .(+) T ) ) |
| 37 | eqid | |- ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> (/) ) = ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> (/) ) |
|
| 38 | 0ex | |- (/) e. _V |
|
| 39 | eqidd | |- ( ( t = T /\ u = U ) -> (/) = (/) ) |
|
| 40 | 37 38 39 | elovmpo | |- ( x e. ( T ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> (/) ) U ) <-> ( T e. ~P ( Base ` G ) /\ U e. ~P ( Base ` G ) /\ x e. (/) ) ) |
| 41 | 40 | simp3bi | |- ( x e. ( T ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> (/) ) U ) -> x e. (/) ) |
| 42 | 41 | ssriv | |- ( T ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> (/) ) U ) C_ (/) |
| 43 | ss0 | |- ( ( T ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> (/) ) U ) C_ (/) -> ( T ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> (/) ) U ) = (/) ) |
|
| 44 | 42 43 | ax-mp | |- ( T ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> (/) ) U ) = (/) |
| 45 | elpwi | |- ( t e. ~P ( Base ` G ) -> t C_ ( Base ` G ) ) |
|
| 46 | 45 | 3ad2ant2 | |- ( ( -. G e. _V /\ t e. ~P ( Base ` G ) /\ u e. ~P ( Base ` G ) ) -> t C_ ( Base ` G ) ) |
| 47 | fvprc | |- ( -. G e. _V -> ( Base ` G ) = (/) ) |
|
| 48 | 47 | 3ad2ant1 | |- ( ( -. G e. _V /\ t e. ~P ( Base ` G ) /\ u e. ~P ( Base ` G ) ) -> ( Base ` G ) = (/) ) |
| 49 | 46 48 | sseqtrd | |- ( ( -. G e. _V /\ t e. ~P ( Base ` G ) /\ u e. ~P ( Base ` G ) ) -> t C_ (/) ) |
| 50 | ss0 | |- ( t C_ (/) -> t = (/) ) |
|
| 51 | 49 50 | syl | |- ( ( -. G e. _V /\ t e. ~P ( Base ` G ) /\ u e. ~P ( Base ` G ) ) -> t = (/) ) |
| 52 | 51 | orcd | |- ( ( -. G e. _V /\ t e. ~P ( Base ` G ) /\ u e. ~P ( Base ` G ) ) -> ( t = (/) \/ u = (/) ) ) |
| 53 | 0mpo0 | |- ( ( t = (/) \/ u = (/) ) -> ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) = (/) ) |
|
| 54 | 52 53 | syl | |- ( ( -. G e. _V /\ t e. ~P ( Base ` G ) /\ u e. ~P ( Base ` G ) ) -> ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) = (/) ) |
| 55 | 54 | rneqd | |- ( ( -. G e. _V /\ t e. ~P ( Base ` G ) /\ u e. ~P ( Base ` G ) ) -> ran ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) = ran (/) ) |
| 56 | rn0 | |- ran (/) = (/) |
|
| 57 | 55 56 | eqtrdi | |- ( ( -. G e. _V /\ t e. ~P ( Base ` G ) /\ u e. ~P ( Base ` G ) ) -> ran ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) = (/) ) |
| 58 | 57 | mpoeq3dva | |- ( -. G e. _V -> ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` O ) y ) ) ) = ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> (/) ) ) |
| 59 | 9 58 | eqtrid | |- ( -. G e. _V -> ( LSSum ` O ) = ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> (/) ) ) |
| 60 | 59 | oveqd | |- ( -. G e. _V -> ( T ( LSSum ` O ) U ) = ( T ( t e. ~P ( Base ` G ) , u e. ~P ( Base ` G ) |-> (/) ) U ) ) |
| 61 | fvprc | |- ( -. G e. _V -> ( LSSum ` G ) = (/) ) |
|
| 62 | 2 61 | eqtrid | |- ( -. G e. _V -> .(+) = (/) ) |
| 63 | 62 | oveqd | |- ( -. G e. _V -> ( U .(+) T ) = ( U (/) T ) ) |
| 64 | 0ov | |- ( U (/) T ) = (/) |
|
| 65 | 63 64 | eqtrdi | |- ( -. G e. _V -> ( U .(+) T ) = (/) ) |
| 66 | 44 60 65 | 3eqtr4a | |- ( -. G e. _V -> ( T ( LSSum ` O ) U ) = ( U .(+) T ) ) |
| 67 | 36 66 | pm2.61i | |- ( T ( LSSum ` O ) U ) = ( U .(+) T ) |