This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition swaps the arguments in a two-argument function. When F is a matrix, which is to say a function from ( 1 ... m ) X. ( 1 ... n ) to RR or some ring, tpos F is the transposition of F , which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovtpos | |- ( A tpos F B ) = ( B F A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtpos | |- ( y e. _V -> ( <. A , B >. tpos F y <-> <. B , A >. F y ) ) |
|
| 2 | 1 | elv | |- ( <. A , B >. tpos F y <-> <. B , A >. F y ) |
| 3 | 2 | iotabii | |- ( iota y <. A , B >. tpos F y ) = ( iota y <. B , A >. F y ) |
| 4 | df-fv | |- ( tpos F ` <. A , B >. ) = ( iota y <. A , B >. tpos F y ) |
|
| 5 | df-fv | |- ( F ` <. B , A >. ) = ( iota y <. B , A >. F y ) |
|
| 6 | 3 4 5 | 3eqtr4i | |- ( tpos F ` <. A , B >. ) = ( F ` <. B , A >. ) |
| 7 | df-ov | |- ( A tpos F B ) = ( tpos F ` <. A , B >. ) |
|
| 8 | df-ov | |- ( B F A ) = ( F ` <. B , A >. ) |
|
| 9 | 6 7 8 | 3eqtr4i | |- ( A tpos F B ) = ( B F A ) |