This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tposmpo.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| Assertion | tposmpo | |- tpos F = ( y e. B , x e. A |-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposmpo.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| 2 | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
|
| 3 | ancom | |- ( ( x e. A /\ y e. B ) <-> ( y e. B /\ x e. A ) ) |
|
| 4 | 3 | anbi1i | |- ( ( ( x e. A /\ y e. B ) /\ z = C ) <-> ( ( y e. B /\ x e. A ) /\ z = C ) ) |
| 5 | 4 | oprabbii | |- { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } = { <. <. x , y >. , z >. | ( ( y e. B /\ x e. A ) /\ z = C ) } |
| 6 | 1 2 5 | 3eqtri | |- F = { <. <. x , y >. , z >. | ( ( y e. B /\ x e. A ) /\ z = C ) } |
| 7 | 6 | tposoprab | |- tpos F = { <. <. y , x >. , z >. | ( ( y e. B /\ x e. A ) /\ z = C ) } |
| 8 | df-mpo | |- ( y e. B , x e. A |-> C ) = { <. <. y , x >. , z >. | ( ( y e. B /\ x e. A ) /\ z = C ) } |
|
| 9 | 7 8 | eqtr4i | |- tpos F = ( y e. B , x e. A |-> C ) |