This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace sum operation in the opposite group. (Contributed by Mario Carneiro, 19-Apr-2016) (Proof shortened by AV, 2-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppglsm.o | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | |
| oppglsm.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| Assertion | oppglsm | ⊢ ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppglsm.o | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | |
| 2 | oppglsm.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | 1 | fvexi | ⊢ 𝑂 ∈ V |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 1 4 | oppgbas | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 ) |
| 6 | eqid | ⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) | |
| 7 | eqid | ⊢ ( LSSum ‘ 𝑂 ) = ( LSSum ‘ 𝑂 ) | |
| 8 | 5 6 7 | lsmfval | ⊢ ( 𝑂 ∈ V → ( LSSum ‘ 𝑂 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) ) |
| 9 | 3 8 | ax-mp | ⊢ ( LSSum ‘ 𝑂 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) |
| 10 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 11 | 4 10 2 | lsmfval | ⊢ ( 𝐺 ∈ V → ⊕ = ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 12 | 11 | tposeqd | ⊢ ( 𝐺 ∈ V → tpos ⊕ = tpos ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 13 | eqid | ⊢ ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | |
| 14 | 13 | reldmmpo | ⊢ Rel dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 15 | 13 | mpofun | ⊢ Fun ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 16 | funforn | ⊢ ( Fun ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) : dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) | |
| 17 | 15 16 | mpbi | ⊢ ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) : dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 18 | tposfo2 | ⊢ ( Rel dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) → ( ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) : dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) → tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) : ◡ dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) | |
| 19 | 14 17 18 | mp2 | ⊢ tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) : ◡ dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 20 | forn | ⊢ ( tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) : ◡ dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) → ran tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) | |
| 21 | 19 20 | ax-mp | ⊢ ran tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 22 | 10 1 6 | oppgplus | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) |
| 23 | 22 | eqcomi | ⊢ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) |
| 24 | 23 | a1i | ⊢ ( ( 𝑦 ∈ 𝑢 ∧ 𝑥 ∈ 𝑡 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) |
| 25 | 24 | mpoeq3ia | ⊢ ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) |
| 26 | 25 | tposmpo | ⊢ tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) |
| 27 | 26 | rneqi | ⊢ ran tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) |
| 28 | 21 27 | eqtr3i | ⊢ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) |
| 29 | 28 | a1i | ⊢ ( ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) |
| 30 | 29 | mpoeq3ia | ⊢ ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) = ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) |
| 31 | 30 | tposmpo | ⊢ tpos ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) |
| 32 | 12 31 | eqtrdi | ⊢ ( 𝐺 ∈ V → tpos ⊕ = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) ) |
| 33 | 9 32 | eqtr4id | ⊢ ( 𝐺 ∈ V → ( LSSum ‘ 𝑂 ) = tpos ⊕ ) |
| 34 | 33 | oveqd | ⊢ ( 𝐺 ∈ V → ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑇 tpos ⊕ 𝑈 ) ) |
| 35 | ovtpos | ⊢ ( 𝑇 tpos ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) | |
| 36 | 34 35 | eqtrdi | ⊢ ( 𝐺 ∈ V → ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| 37 | eqid | ⊢ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) | |
| 38 | 0ex | ⊢ ∅ ∈ V | |
| 39 | eqidd | ⊢ ( ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) → ∅ = ∅ ) | |
| 40 | 37 38 39 | elovmpo | ⊢ ( 𝑥 ∈ ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) ↔ ( 𝑇 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑈 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ∅ ) ) |
| 41 | 40 | simp3bi | ⊢ ( 𝑥 ∈ ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) → 𝑥 ∈ ∅ ) |
| 42 | 41 | ssriv | ⊢ ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) ⊆ ∅ |
| 43 | ss0 | ⊢ ( ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) ⊆ ∅ → ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) = ∅ ) | |
| 44 | 42 43 | ax-mp | ⊢ ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) = ∅ |
| 45 | elpwi | ⊢ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) → 𝑡 ⊆ ( Base ‘ 𝐺 ) ) | |
| 46 | 45 | 3ad2ant2 | ⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → 𝑡 ⊆ ( Base ‘ 𝐺 ) ) |
| 47 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) | |
| 48 | 47 | 3ad2ant1 | ⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∅ ) |
| 49 | 46 48 | sseqtrd | ⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → 𝑡 ⊆ ∅ ) |
| 50 | ss0 | ⊢ ( 𝑡 ⊆ ∅ → 𝑡 = ∅ ) | |
| 51 | 49 50 | syl | ⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → 𝑡 = ∅ ) |
| 52 | 51 | orcd | ⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ( 𝑡 = ∅ ∨ 𝑢 = ∅ ) ) |
| 53 | 0mpo0 | ⊢ ( ( 𝑡 = ∅ ∨ 𝑢 = ∅ ) → ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) = ∅ ) | |
| 54 | 52 53 | syl | ⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) = ∅ ) |
| 55 | 54 | rneqd | ⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) = ran ∅ ) |
| 56 | rn0 | ⊢ ran ∅ = ∅ | |
| 57 | 55 56 | eqtrdi | ⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) = ∅ ) |
| 58 | 57 | mpoeq3dva | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) ) |
| 59 | 9 58 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → ( LSSum ‘ 𝑂 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) ) |
| 60 | 59 | oveqd | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) ) |
| 61 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( LSSum ‘ 𝐺 ) = ∅ ) | |
| 62 | 2 61 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → ⊕ = ∅ ) |
| 63 | 62 | oveqd | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑈 ⊕ 𝑇 ) = ( 𝑈 ∅ 𝑇 ) ) |
| 64 | 0ov | ⊢ ( 𝑈 ∅ 𝑇 ) = ∅ | |
| 65 | 63 64 | eqtrdi | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑈 ⊕ 𝑇 ) = ∅ ) |
| 66 | 44 60 65 | 3eqtr4a | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| 67 | 36 66 | pm2.61i | ⊢ ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) |